Previous reports have indicated that calcium is necessary to support active sodium transport by the toad bladder, and may be required as well in the action of vasopressin on both toad bladder and frog skin. The structure and function of the toad bladder has been studied in the absence of calcium, and a reinterpretation of the previous findings now appears possible. When calcium is withdrawn from the bathing medium, epithelial cells detach from one another and eventually from their supporting tissue. The short-circuit current (the conventional means of determining active sodium transport) falls to zero, and vasopressin fails to exert its usual effect on short-circuit current and water permeability. However, employing an indirect method for the estimation of sodium transport (oxygen consumption), it is possible to show that vasopressin exerts its usual effect on Qoo2 when sodium is present in the bathing medium. Hence, it appears that the epithelial cells maintain active sodium transport when calcium is rigorously excluded from the bathing medium, and continue to respond to vasopressin. The failure of conventional techniques to show this can be attributed to the structural alterations in the epithelial layer in the absence of calcium. These findings may provide a model for the physiologic action of calcium in epithelia such as the renal tubule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.