The intra-axonal horseradish peroxidase technique was used to examine the central terminals of 7 A beta primary afferent fibers from rapidly adapting (RA) mechanoreceptors in the glabrous skin of the cat's hindpaw. At the light microscopic level, labelled collaterals were seen to bear occasional boutonlike swellings, mostly (75-82%) of the en passant type. These swellings were distributed more or less uniformly from lamina III to a dorsal part of lamina VI in the dorsal horn, over a maximum longitudinal extent of about 4 mm. At the electron microscopic level, we observed that labelled boutons of RA afferent fibers were 1.0 to 3.3 micrometers in longest sectional dimension, and contained clear, round synaptic vesicles. They frequently formed asymmetric axospinous and axodendritic synapses and commonly appeared to receive contacts from unlabelled structures containing flattened or pleomorphic vesicles plus occasional large dense-cored vesicles. The examination of synaptic connectivity over the entire surface of individual boutons indicated that RA afferent boutons each made contacts with an average of one spine and one dendrite and, in addition, appeared to be postsynaptic to an average of two unlabelled vesicle-containing structures. This synaptic organization was, in general, more complex than that we had seen previously in Pacinian corpuscle (PC) and slowly adapting (SA) type I mechanoreceptive afferent fibers. Our findings indicate that RA, SA, and PC afferent terminals, while displaying some differential synaptic organizations, have many morphological and synaptological characteristics in common. These afferent terminals, in turn, seem to be generally distinguishable from the terminals of muscle spindle Ia afferents or unmyelinated primary afferents.
Sympathetic neurotransmitters have been shown to be present in the ovary of the rat during early postnatal development and to affect steroidogenesis before the ovary becomes responsive to gonadotropins, and before the first primordial follicles are formed. This study was undertaken to determine if development of the ovarian innervation is an event that antedates the initiation of folliculogenesis in the rat, Rattus norvegicus. Serial sections of postnatal ovaries revealed a negligible frequency of follicles 24 h after birth (about 1 primordial follicle per ovary). Twelve hours later there were about 500 follicles per ovary, a number that more than doubled to about 1300 during the subsequent 12 h, indicating that an explosive period of follicular differentiation occurs between the end of postnatal days 1 and 2. Electron microscopy demonstrated that before birth the ovaries are already innervated by fibers containing clear and dense-core vesicles. Immunohistochemistry performed on either fetal (day 19) or newborn (less than 15h after birth) ovaries showed the presence of catecholaminergic nerves, identified by their content of immunoreactive tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. While some of these fibers innervate blood vessels, others are associated with primordial ovarian cells, thereby suggesting their participation in non-vascular functions. Since prefollicular ovaries are insensitive to gonadotropins, the results suggest that the developing ovary becomes subjected to direct neurogenic influences before it acquires responsiveness to gonadotropins.
Previous reports have indicated that calcium is necessary to support active sodium transport by the toad bladder, and may be required as well in the action of vasopressin on both toad bladder and frog skin. The structure and function of the toad bladder has been studied in the absence of calcium, and a reinterpretation of the previous findings now appears possible. When calcium is withdrawn from the bathing medium, epithelial cells detach from one another and eventually from their supporting tissue. The short-circuit current (the conventional means of determining active sodium transport) falls to zero, and vasopressin fails to exert its usual effect on short-circuit current and water permeability. However, employing an indirect method for the estimation of sodium transport (oxygen consumption), it is possible to show that vasopressin exerts its usual effect on Qoo2 when sodium is present in the bathing medium. Hence, it appears that the epithelial cells maintain active sodium transport when calcium is rigorously excluded from the bathing medium, and continue to respond to vasopressin. The failure of conventional techniques to show this can be attributed to the structural alterations in the epithelial layer in the absence of calcium. These findings may provide a model for the physiologic action of calcium in epithelia such as the renal tubule.
Primary afferent fibers transmitting impulses from slowly adapting (SA) Type I receptors in the glabrous skin of the hind paw of the cat were injected intraaxonally in the spinal cord with horseradish peroxidase (HRP). At the light microscopic level, terminal arborizations were observed in the medial dorsal horn extending up to 6 mm rostrocaudally in and near the seventh lumbar segment. Boutonlike swellings labelled with HRP were distributed in clusters in Rexed's laminae III-VI. There was a tendency for the most dorsal clusters from an individual fiber to be located rostrally and for the most ventral clusters to be located caudally. At the electron microscopic level, a combination of morphometric analysis and serial reconstruction revealed the following: (1) All the boutons labelled with HRP contained predominantly clear, round synaptic vesicles, 40-50 nm in diameter. (2) Labelled boutons (n = 75) had cross-sectional longest dimensions of 1.72 +/- 0.53 micron (Mean +/- S.D.), perimeters of 4.95 +/- 1.52 micron, and areas of 1.18 +/- 0.59 micron 2. Their shapes in section varied from rounded to elongated forms. (3) The sizes of labelled boutons decreased significantly and linearly with depth from lamina IV to VI. The shapes of the bouton cross sections also became rounder with depth in the dorsal horn. (4) About 72% of synaptic contacts associated with HRP-filled boutons were with dendritic spines and shafts; most of these synapses were of the asymmetric type. (5) The remainder (28%) of the appositions were synapselike contacts between labelled boutons and unlabelled structures containing flattened or pleomorphic vesicles, and occasional dense-cored vesicles. (6) We observed no unequivocal axosomatic contacts made by labelled boutons. (7) The lengths of synaptic appositions with dendritic spines (0.46 +/- 0.20 micron) or with dendritic shafts (0.51 +/- 0.18 micron) were significantly greater than the synapselike contacts with vesicle-containing unlabelled structures (0.29 +/- 0.09 micron). (8) Complex neuropilar organization was occasionally seen with labelled boutons as central elements, although simpler organizations were much more common. In summary, HRP-labelled fibers ended predominantly in boutons containing clear, round vesicles forming axospinous and axodendritic synapses.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.