Internet of Things (IoT) becomes discretionary part of everyday life. Scalability and manageability is daunting due to unbounded number of devices and services. Access control and authorization in IoT with least privilege is equally important to establish secure communication between multiple devices and services. In this paper, the concept of capability for access control is introduced where the identities of the involved devices are entrenched in the access capabilities. Identity driven capability based access control (ICAC) scheme presented in this paper helps to alleviate issues related to complexity and dynamics of device identities. ICAC is implemented for 802.11 and results shows that ICAC has less scalability issues and better performance analysis compared with other access control schemes. The ICAC evaluation by using security protocol verification tool shows that ICAC is secure against man-in-the-middle attack, especially eavesdropping and replay attacks.
In the last few years the Internet of Things (IoT) has seen widespreadapplication and can be found in each field. Authentication and accesscontrol are important and critical functionalities in the context of IoTto enable secure communication between devices. Mobility, dynamicnetwork topology and weak physical security of low power devices in IoTnetworks are possible sources for security vulnerabilities. It ispromising to make an authentication and access control attack resistant andlightweight in a resource constrained and distributed IoT environment.This paper presents the Identity Authentication and Capability basedAccess Control (IACAC) model with protocol evaluation and performanceanalysis. To protect IoT from man-in-the-middle, replay and denial ofservice (Dos) attacks, the concept of capability for access control isintroduced. The novelty of this model is that, it presents an integratedapproach of authentication and access control for IoT devices. Theresults of other related study have also been analyzed to validate andsupport our findings. Finally, the proposed protocol is evaluated byusing security protocol verification tool and verification results showsthat IACAC is secure against aforementioned attacks. This paper alsodiscusses performance analysis of the protocol in terms of computationaltime compared to other existing solutions. Furthermore, this paper addresseschallenges in IoT and security attacks are modelled with the use casesto give an actual view of IoT networks.
Independent living of senior citizens is one of the main challenges linked to the ageing population. Senior citizens may suffer from a number of diseases, including the decline in cardiopulmonary conditions, weaker muscle functions and a declined neuromuscular control of the movements, which result in a higher risk of fall and a higher vulnerability for cardiovascular and pulmonary diseases. With respect to cognitive functions, senior citizens may suffer from a decline of memory function, less ability to orientate and a declined ability to cope with complex situations. This is by itself a big societal challenge with impact in multiple sectors. In this paper we present an innovative ICT solution, named eWALL, that aims to address these challenges by means of an advanced ICT infrastructure and home sensing environment; thus differentiating from existing eHealth and eCare solutions. The system of eWALL will extend the state-of-the-art of Assistive Platforms and will significantly increase the independent living of seniors.
The integration of everyday objects into the Internet represents the foundation of the forthcoming Internet of Things (IoT). Smart objects will be the building blocks of the next generation of applications that will exploit interaction between machines to implement enhanced services with minimum or no human intervention in the loop. A crucial factor to enable Machine-to-Machine (M2M) applications is a horizontal service infrastructure that seamlessly in- tegrates existing IoT heterogeneous systems. The authors present BETaaS, a framework that enables horizontal M2M deployments. BETaaS is based on a distributed service infrastructure built on top of an overlay network of gateways that allows seamless integration of existing IoT systems. The platform enables easy deployment of applications by exposing to developers a service oriented interface to access things (according to a Things-as-a-Service model) regardless of the technology and the physical infrastructure they belong to.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.