<p><span lang="EN-GB">Deteksi Covid-19 merupakan tahapan penting untuk mengenali secara dini pasien terduga Covid-19 sehingga dapat dilakukan langkah lanjutan. Salah satu cara pendeteksian adalah melalui citra sinar-x paru. Namun demikian, selain dibutuhkan suatu model algoritma yang dapat menghasilkan akurasi tinggi, komputasi yang ringan merupakan hal yang dibutuhkan sehingga dapat diaplikasikan dalam alat pendeteksi. Model deep CNN dapat melakukan deteksi dengan akurat namun cenderung memerlukan penggunaan memori yang besar. CNN dengan parameter yang lebih sedikit dapat menghemat <em>storage </em></span><span lang="EN-GB">maupun penggunaan memori sehingga dapat berproses secara real time baik berupa alat pendeteksi maupun sistem pengambilan keputusan via <em>cloud</em>. Selain itu, CNN dengan parameter yang lebih kecil juga dapat untuk diaplikasikan pada FPGA dan perangkat keras lainnya yang mempunyai kapasitas memori terbatas. Untuk menghasilkan deteksi COVID-19 pada citra sinar-x paru yang akurat namun komputasinya juga ringan, kami mengusulkan arsitektur CNN kecil namun handal </span><span lang="EN-GB">dengan menggunakan teknik pertukaran <em>channel</em> yang disebut ShuffleNet. Dalam penelitian ini, kami menguji dan membandingkan kemampuan ShuffleNet, EfficientNet, dan ResNet50 karena mempunyai jumlah parameter yang lebih kecil dibanding CNN pada umumnya seperti VGGNet atau FullConv yang menggunakan lapisan konvolusi secara penuh namun mempunyai kemampuan deteksi yang mumpuni. Kami menggunakan 1125 citra sinar-x dan mencapai akurasi 86.93 % dengan jumlah parameter model yang 18.55 kali lebih sedikit dari EfficientNet dan 22.36 kali lebih sedikit dari ResNet50 untuk mendeteksi 3 kategori yaitu Covid-19, Pneumonia, dan normal melalui uji 5-<em>fold crossvalidation</em>. Memori yang diperlukan oleh masing-masing arsitektur CNN tersebut untuk melakukan sekali deteksi berhubungan secara linier dengan jumlah parameternya dimana ShuffleNet hanya memerlukan memori GPU sebesar 0.646 GB atau 0.43 kali dari ResNet50, 0.2 kali dari EfficientNet, dan 0.53 kali dari FullConv. Lebih lanjut, ShuffleNet melakukan deteksi paling cepat yaitu sebesar 0.0027 detik.</span></p><p><span lang="EN-GB"><br /></span></p><p><em><strong><span lang="EN-GB">Abstract</span></strong></em></p><p><em>Covid-19 detection is an important step in identifying early patients with suspected Covid-19 so that further steps can be taken. One way of detection is through pulmonary x-ray images. However, besides requiring an algorithm model that can produce high accuracy, lightweight computation is needed so that it can be applied in a detector. The deep CNN model can detect accurately but tends to require large memory usage. CNN with fewer parameters can save storage and memory usage so that it can process in real time both in the form of detection devices and decision-making systems via the cloud. In addition, CNN with smaller parameters can also be applied to FPGA and other hardware that have limited memory capacity. To produce accurate COVID-19 detection on x-ray images with lightweight computation, we propose a small but reliable CNN architecture using a channel shuffle technique called ShuffleNet. In this study, we tested and compared the capabilities of ShuffleNet, EfficientNet, and ResNet because they have a smaller number of parameters than usual deep CNN, such as VGGNet or FullConv which uses a full convolution layers with a robust detection capability. We used 1125 x-ray images and achieved an accuracy of 86.93% with a number of model parameters of 18.55 times less than EfficientNet and 22.36 times less than ResNet50 to detect 3 categories namely Covid-19, Pneumonia, and normal through the 5-fold cross validation. The memory required by each CNN architecture to perform one detection is linearly related to the number of parameters where ShuffleNet only requires GPU memory of 0.646 GB or 0.43 times that of ResNet50, 0.2 times of EfficientNet, and 0.53 times of FullConv. Furthermore, ShuffleNet performs the fastest detection at 0.0027 seconds. </em></p><p><em><strong><span lang="EN-GB"><br /></span></strong></em></p>
Kebijakan Kampus Merdeka merupakan salah satu kebijakan baru yang digagas oleh Menteri Pendidikan dan Kebudayaan Republik Indonesia (Mendikbud RI). Kebijakan tersebut tengah ramai disorot publik khususnya pada platform Youtube berkaitan dengan video unggahan Mendikbud di kanalnya. Pada Youtube, opini masyarakat dapat membanjiri kolom komentar dalam sekejap karena kemunculannya sebagai platform pertama yang menawarkan fasilitas konten audio visual. Penelitian ini mencoba menganalisis opini masyarakat yang tertampung dalam kolom komentar Youtube ke dalam klasifikasi sentimen positif dan negatif. Klasifikasi diimplementasikan pada Google Colaboratory yang berbasis bahasa Python dan Jupyter Notebook dengan algoritme Naive Bayes Classifier serta pembobotan kata Term Frequency Inverse Document Frequency (TF-IDF). 5 proses utama dalam penelitian ini yang meliputi pelabelan manual, text preprocessing, pembobotan TF-IDF, validasi data menggunakan k-fold cross validation, dan klasifikasi. Hasil akurasi terbaik sebesar 97% yang didapat dengan menggunakan 900 data latih, 100 data uji, menerapkan pembobotan TF-IDF, dan 10-fold cross validation. Rata-rata akurasi yang didapat dari 10 iterasi pada k-fold cross validation yaitu sebesar 91.8% dengan nilai precision, recall, f-measure sebesar 90.35%, 93.6%, 91.95%. Berdasarkan hasil tersebut, Naive Bayes Classifier cukup baik sebagai alternatif untuk analisis sentimen.
The purpose of this study is to discuss and develop Spatial-Temporal Autologistic Regression Model (STARM) to represent spreading of the Aedes aegypti which is indicated by the endemic level of DHF (Dengue Hemorrhagic Fever) in East Java. The method which is used to estimate STARM parameter is Bayesian method with Markov Chain Monte Carlo (MCMC) and Gibbs Sampler simulation. This study observed 38 districts as spatial lattice units, meanwhile temporal unit is represented by monthly period of evidence (January-December) in 2002-2008. Result of the research was obtained STARM model that indicate the spreading pattern of the Aedes aegypti that is indicated by the endemic level of DHF incidence in East Java have spatially and temporally positive correlation. Model validation using 95% credible interval shows that all estimators are significant. This is also supported by a MAE value 0.09 and the percentage of correctly classified predicted data 90%, which means there are 90 correctly classified data of 100 prediction data.
The role of MSMEs in the economic development of a country has important implications for increasing income, reducing unemployment, alleviating poverty and economic growth. The Covid-19 pandemic has had a negative impact and threatened the survival of MSMEs. This study aims to analyze the dynamics of the triple helix model by examining the role of each helix: universities, companies, and governments to help MSMEs rise from adversity. This study identifies behavioral profiles in terms of the performance of the triple helix model from the perspective of MSMEs and recognizes key factors for innovation success and competitiveness. The survey involved 134 MSMEs. The analysis method uses SEM-PLS with WarpPLS07. The results of the study indicate that there is a positive influence between the synergy of the government and academia in increasing the innovation and competitiveness of MSMEs. Innovation is able to become a mediator for the synergy of the government and academia in increasing the competitiveness of MSMEs. MSMEs need to be more active and proactive, the role of the government and academics still needs to be improved and coupled with the optimal role of other helixes, especially the community as a strategy to survive and thrive in the Covid-19 pandemic situation.
AbstrakPenelitian dilakukan untuk melakukan pemetaan data dan visualisasi kedalaman air suatu waduk. Hasil dari pemetaan dan visualisasinya digunakan untuk mengetahui kontur endapan dan volume waduk. Pemetaan dilakukan dengan memprediksi titik-titik yang tidak diketahui kedalaman airnya berdasarkan titik-titik yang diketahui kedalaman airnya. Metode prediksi yang digunakan pada penelitian ini adalah metode interpolasi IDW (Inverse Distance Weighting), yaitu perhitungan rata-rata n buah titik, dimana titik-titik terdekat memiliki bobot pengaruh yang lebih besar dibandingkan titik-titik hasil pengukuran yang lebih jauh. Digunakannya metode ini bertujuan agar proses prediksi yang dilakukan dapat dilakukan dengan cepat, karena prediksi dilakukan untuk banyak titik-titik lain yang belum diketahui kedalaman airnya. Dari hasil penelitian diperoleh hasil bahwa jumlah titik yang paling baik digunakan untuk memprediksi titik yang tidak diketahui kedalaman airnya adalah sebanyak 5 buah titik terdekat. Data yang digunakan sebagai data percobaan pada penelitian ini adalah data pengukuran kedalaman air di waduk atau bendungan Wonorejo tahun 2004 dan tahun 2005. Hasil dari penelitian ini adalah suatu perangkat lunak yang digunakan untuk melakukan pemetaan dan memvisualisasikan kedalaman air di suatu waduk atau bendungan. Kata kunci: visualisasi, pemetaan, interpolasi, inverse distance weighting (idw) Abstract Prediction has been widely used in every research
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.