Designing the interface in polymer composites is fundamentally a challenging task. Here, we demonstrate a strategy to engineer the interphase microstructure in carbon fiber/epoxy composites (CFRPs) using carbon nanotubes (CNTs). The incorporation of CNT modifies the interfacial mechanics and interfacial chemistry in conventional CFRPs by creating concentrated, dispersed and mixed type interphase. Therefore, a detailed study is warranted to establish the interfacial microstructure‐property relationship in CNT modified CFRPs. Experimental results show that the relative improvement in interfacial shear strength (IFSS) and interfacial fracture toughness (Gic) depends on the microstructure of interphase. It is shown that simultaneous improvement in IFSS and Gic is possible with certain types of microstructural designs. Moreover, it is observed that IFSS and Gic are not constant material parameters but both of them show a power‐law type dependence on the applied loading rate. The range of rate sensitivity parameters as a function of interphase type suggests that while concentrated and mixed interphase is more suited to maintain the interfacial integrity, dispersed interphase is beneficial for energy dissipating applications of CFRPs. In addition, IFSS and Gic exhibit negative rate sensitivity for certain cases. Finally, it is shown that interphase designing using CNT is an excellent tool to accurately tailor the average interfacial properties of CFRP in a broad range of 16‐79 MPa and 100‐453 J m−2 for IFSS and Gic, respectively.
A detailed experimental investigation was carried out to establish the relationship between CNT purification and functionalization routes and the average response of CNT/epoxy nanocomposites under static and dynamic loading. It was shown that the relative improvement in the mechanical properties of the epoxy matrix due to the addition of CNTs depends on the choice of purification and functionalization steps. A better dispersion of CNTs was recorded for the functionalized CNTs as compared to the oxidized and CVD grown CNTs. Moreover, tensile, 3-point bending and nanoDMA testing performed on nanocomposites processed with CVD-grown, oxidized and functionalized CNTs revealed that COOH functionalization after the oxidation of CNTs at 350 °C is the optimized processing route to harness the excellent properties of CNTs in CNT/epoxy nanocomposites.
An experimental study is carried out to quantitatively assess the dispersion quality of carbon nanotubes (CNTs) in epoxy matrix as a function of CNT variant and weight fraction. To this end, two weight fractions (0.05% and 0.25%) of as-grown, oxidized, and functionalized CNTs are used to process CNT/epoxy nanocomposites. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared analysis of different variants of CNTs are used to establish the efficiency of purification route. While the relative change in mechanical properties is investigated through tensile and micro-hardness testing, thermal conductivity of different nanocomposites is measured to characterize the effect of CNT addition on the average thermal properties of epoxy. Later on, a quantitative analysis is carried out to establish the relationship between the observed improvements in average composite properties with the dispersion quality of CNTs in epoxy. It is shown that carboxylic (-COOH) functionalization reduces the average CNT agglomerate size and thus ensures better dispersion of CNTs in epoxy even at higher CNT weight fraction. The improved dispersion leads to enhanced interfacial interaction at the CNT/epoxy interface and hence provides higher relative improvement in nanocomposite properties compared to the samples prepared using as-grown and oxidized CNTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.