Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by cerebellar degeneration, immunodeficiency, oculocutaneous telangiectasias, chromosomal instability, radiosensitivity, and cancer predisposition. The gene mutated in the patients, ATM, encodes a member of the phosphatidylinositol 3-kinase family proteins. The ATM protein has a key role in the cellular response to DNA damage. Truncating and splice site mutations in ATM have been found in most patients with the classical AT phenotype. Here we report of our extensive ATM mutation screening on 25 AT patients from 19 families of different ethnic origin. Previously unknown mutations were identified in six patients including a new homozygous missense mutation, c.8110T>C (p.Cys2704Arg), in a severely affected patient. Comprehensive clinical data are presented for all patients described here along with data on ATM function generated by analysis of cell lines established from a subset of the patients.
We report on a female patient with an exceedingly rare combination of achondroplasia and multiple-suture craniosynostosis. Besides the specific features of achondroplasia, synostosis of the metopic, coronal, lambdoid, and squamosal sutures was found. Series of neurosurgical interventions were carried out, principally for acrocephaly and posterior plagiocephaly. The most common achondroplasia mutation, a p.Gly380Arg in the fibroblast growth factor receptor 3 (FGFR3) gene, was detected. Cytogenetic and array CGH analyses, as well as molecular genetic testing of FGFR1, 2, 3 and TWIST1 genes failed to identify any additional genetic alteration. It is suggested that this unusual phenotype is a result of variable expressivity of the common achondroplasia mutation.
Differences of more than 3 million nucleotides can bee seen comparing the genomes of two individuals as a result of single nucleotide polymorphism (SNP). More and more SNPs can be identified and it seems that these alterations are behind of several biological phenomena. Personal differences in these nucleotides result for example in elevated disease susceptibilities, that is, certain nucleotides are more frequent in patients suffering from different diseases comparing to the healthy population. SNPs may cause substantial alterations in the cells, e.g. the enzyme activity of the respective gene changes, but in other cases the effects of the SNPs are not so pronounced. Later results indicate that SNPs can be rendered to individuals living a longer life than the average. Perhaps these results will not directly lead to the lengthening of the maximal life span; however, genes that play an important role in the aging process could be identified. In this respect SNPs are important factors in determining the information level of the cells of individuals which determines the maximal life span (I. Semsei On the nature of aging. Mech. Ageing Dev . 2000; 117: 93-108), in turn SNP is one of the factors that determine the aging process. Since there are certain age-related diseases, the discovery and the description of the SNPs as a function of age and diseases may result in a better understanding of the common roots of aging and those diseases.
Craniosynostosis, the premature closure of cranial sutures, is a common craniofacial disorder with heterogeneous etiology and appearance. The purpose of this study was to investigate the clinical and molecular characteristics of craniosynostoses in Hungary, including the classification of patients and the genetic analysis of the syndromic forms. Between 2006 and 2012, 200 patients with craniosynostosis were studied. Classification was based on the suture(s) involved and the associated clinical features. In syndromic cases, genetic analyses, including mutational screening of the hotspot regions of the FGFR1, FGFR2, FGFR3, and TWIST1 genes, karyotyping and FISH study of TWIST1, were performed. The majority (88%) of all patients with craniosynostosis were nonsyndromic. The sagittal suture was most commonly involved, followed by the coronal, metopic, and lambdoid sutures. Male, twin gestation, and very low birth weight were risk factors for craniosynostosis. Syndromic craniosynostosis was detected in 24 patients. In 17 of these patients, Apert, Crouzon, Pfeiffer, Muenke, or Saethre-Chotzen syndromes were identified. In one patient, multiple-suture craniosynostosis was associated with achondroplasia. Clinical signs were not typical for any particular syndrome in six patients. Genetic abnormalities were detected in 18 syndromic patients and in 8 relatives. In addition to 10 different, known mutations in FGFR1,FGFR2 or FGFR3, one novel missense mutation, c.528C>G(p.Ser176Arg), was detected in the TWIST1 gene of a patient with Saethre-Chotzen syndrome. Our results indicate that detailed clinical assessment is of paramount importance in the classification of patients and allows indication of targeted molecular testing with the highest possible diagnostic yield.
The spectrum of lissencephaly ranges from absent (agyria) or decreased (pachygyria) convolutions to less severe malformation known as subcortical band heterotopia. Mutations involving LIS1 and TUBA1A result in the classic form of lissencephaly, whereas mutations of the DCX gene cause lissencephaly in males and subcortical band heterotopia in females. This report describes the clinical manifestations and imaging and genetic findings in 2 boys with lissencephaly and a girl with subcortical band heterotopia. An ovel mutation (c.83_84delAT, p.Tyr28Phefs*31) was identified in LIS1 in 1 of the boys with lissencephaly and another novel mutation (c.200delG, p.Ile68Leufs*87) was found in DCX in the girl with subcortical band heterotopia. The mutations appeared in the first half of the genes and are predicted to result in truncated proteins. A mutation was found in the TUBA1A gene (c.1205G>A, p.Arg402His) in the other boy. This mutation affects the folding of tubulin heterodimers, changing the interactions with proteins that bind microtubules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.