Mycelium-Based Composites (MBCs) are innovative engineering materials made from lignocellulosic by-products bonded with fungal mycelium. While some performance characteristics of MBCs are inferior to those of currently used engineering materials, these composites nevertheless prove to be superior in ecological aspects. Improving the properties of MBCs may be achieved using an adequate substrate type, fungus species, and manufacturing technology. This article presents scientifically verified guiding principles for choosing a fungus species to obtain the desired effect. This aim was realized based on analyses of scientific articles concerning MBCs, mycological literature, and patent documents. Based on these analyses, over 70 fungi species used to manufacture MBC have been identified and the most commonly used combinations of fungi species-substrate-manufacturing technology are presented. The main result of this review was to demonstrate the characteristics of the fungi considered optimal in terms of the resulting engineering material properties. Thus, a list of the 11 main fungus characteristics that increase the effectiveness in the engineering material formation include: rapid hyphae growth, high virulence, dimitic or trimitic hyphal system, white rot decay type, high versatility in nutrition, high tolerance to a substrate, environmental parameters, susceptibility to readily controlled factors, easy to deactivate, saprophytic, non-mycotoxic, and capability to biosynthesize natural active substances. An additional analysis result is a list of the names of fungus species, the types of substrates used, the applications of the material produced, and the main findings reported in the scientific literature.
Mycelium-based composites (MBCs) have attracted growing attention due to their role in the development of eco-design methods. We concurrently analysed scientific publications, patent documents, and results of our own feasibility studies to identify the current design issues and technologies used. A literature inquiry in scientific and patent databases (WoS, Scopus, The Lens, Google Patents) pointed to 92 scientific publications and 212 patent documents. As a part of our own technological experiments, we have created several prototype products used in architectural interior design. Following the synthesis, these sources of knowledge can be concluded: 1. MBCs are inexpensive in production, ecological, and offer a high artistic value. Their weaknesses are insufficient load capacity, unfavourable water affinity, and unknown reliability. 2. The scientific literature shows that the material parameters of MBCs can be adjusted to certain needs, but there are almost infinite combinations: properties of the input biomaterials, characteristics of the fungi species, and possible parameters during the growth and subsequent processing of the MBCs. 3. The patent documents show the need for development: an effective method to increase the density and the search for technologies to obtain a more homogeneous internal structure of the composite material. 4. Our own experiments with the production of various everyday objects indicate that some disadvantages of MBCs can be considered advantages. Such an unexpected advantage is the interesting surface texture resulting from the natural inhomogeneity of the internal structure of MBCs, which can be controlled to some extent.
The influence of chemical modification of wood on its nucleation ability in polypropylene composites Summary-The crystallization of isotactic polypropylene in contact with pine wood was studied by hot stage polarizing microscopy. The agents applied to chemical treatment of wood were maleic, propionic, phthalic, crotonic or succinic anhydrides. Mercerization and extraction processes were used as well. The aim of this study was to analyze the influence of chemical modification of pine wood on its nucleation activity in polypropylene crystallization process. The occurrence of the transcrystallization layer (TCL) was found to be strongly dependent on the type of chemical treatment of wood surface. Predominant nucleation ability was establish for unmodified pine wood. However, mercerization and extraction processes of wood slightly decreased its nucleation ability in polypropylene matrixes. Moreover, it was determined that wood modified by anhydrides can enhance the transcrystallization layer of PP in comparison with wood mercerized or extracted. Unexpectedly, wood modified with succinic anhydride did not induce transcrystallization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.