Mycelium-Based Composites (MBCs) are innovative engineering materials made from lignocellulosic by-products bonded with fungal mycelium. While some performance characteristics of MBCs are inferior to those of currently used engineering materials, these composites nevertheless prove to be superior in ecological aspects. Improving the properties of MBCs may be achieved using an adequate substrate type, fungus species, and manufacturing technology. This article presents scientifically verified guiding principles for choosing a fungus species to obtain the desired effect. This aim was realized based on analyses of scientific articles concerning MBCs, mycological literature, and patent documents. Based on these analyses, over 70 fungi species used to manufacture MBC have been identified and the most commonly used combinations of fungi species-substrate-manufacturing technology are presented. The main result of this review was to demonstrate the characteristics of the fungi considered optimal in terms of the resulting engineering material properties. Thus, a list of the 11 main fungus characteristics that increase the effectiveness in the engineering material formation include: rapid hyphae growth, high virulence, dimitic or trimitic hyphal system, white rot decay type, high versatility in nutrition, high tolerance to a substrate, environmental parameters, susceptibility to readily controlled factors, easy to deactivate, saprophytic, non-mycotoxic, and capability to biosynthesize natural active substances. An additional analysis result is a list of the names of fungus species, the types of substrates used, the applications of the material produced, and the main findings reported in the scientific literature.
Mycelium-based composites (MBCs) have attracted growing attention due to their role in the development of eco-design methods. We concurrently analysed scientific publications, patent documents, and results of our own feasibility studies to identify the current design issues and technologies used. A literature inquiry in scientific and patent databases (WoS, Scopus, The Lens, Google Patents) pointed to 92 scientific publications and 212 patent documents. As a part of our own technological experiments, we have created several prototype products used in architectural interior design. Following the synthesis, these sources of knowledge can be concluded: 1. MBCs are inexpensive in production, ecological, and offer a high artistic value. Their weaknesses are insufficient load capacity, unfavourable water affinity, and unknown reliability. 2. The scientific literature shows that the material parameters of MBCs can be adjusted to certain needs, but there are almost infinite combinations: properties of the input biomaterials, characteristics of the fungi species, and possible parameters during the growth and subsequent processing of the MBCs. 3. The patent documents show the need for development: an effective method to increase the density and the search for technologies to obtain a more homogeneous internal structure of the composite material. 4. Our own experiments with the production of various everyday objects indicate that some disadvantages of MBCs can be considered advantages. Such an unexpected advantage is the interesting surface texture resulting from the natural inhomogeneity of the internal structure of MBCs, which can be controlled to some extent.
Around 15% of the global population has a moderate or severe disability. For this reason, a design where the needs of elderly and disabled population are included, should become more common practise and should not be limited only to medical and rehabilitation products. In this study, the inclusive design practices related to the kitchens were applied. All the important stages in a design process, such as market research, planning, concept designing, detailed designing, research (ergonomic assessment), and production preparation were completed. In market research we market research examined the preferences of 216 respondents. Sixty percent of them were either elderly and/or disabled persons (direct users), 40% were caretakers, physiotherapists, and managers of care centres (indirect users). Implementation of obtained results is three kitchen lines with assistive technology solutions, which are the response to the requirements identified as appropriate in meeting the needs of the elderly and disabled kitchen users. The main conclusion of the article is the statement that the needs of seniors can and should be efficiently included in a design process of home interiors. It can be recognised as an important “social” designing criterion which can constitute a good basis for going beyond the traditional design and going toward the sustainable design.
Mycelium-based composites (MBCs) are alternative biopolymers for designing sustainable furniture and other interior elements. These innovative biocomposites have many ecological advantages but present a new challenge in aesthetics and human product acceptance. Grown products, made using living mycelium and lignocellulosic substrates, are porous, have irregular surfaces and have irregular coloring. The natural origin of these types of materials and the fear of fungus can be a challenge. This research investigated the level of human acceptance of the new material. Respondents were students of architecture who can be considered as people involved in interior design and competent in the design field. Research has been performed on the authors’ prototype products made from MBCs. Three complementary consumer tests were performed. The obtained results measured the human reactions and demonstrated to which extents products made of MBCs were “likeable” and their nonobvious aesthetics were acceptable to the public. The results showed that MBC materials generally had a positive or not-negative assessment. The responses after the pairwise comparison of the MBC with wall cladding samples pointed out the advantage of ceramic reference material above the MBC based on an overall assessment. The respondents also believed that the chamotte clay cladding would be easier to fit into the aesthetics of a modern interior and would in better accordance with its style. Although the MBC was less visually appealing, the respondents nevertheless found it more interesting, original, and environmentally friendly. The experiments suggested that the respondents had double standards regarding MBCs. MBCs were generally accepted as ecological, but not in their own homes. All of these results support current and future applications of MBCs for manufacturing items where enhanced aesthetics are required.
Aims and ScopeThe Urban Book Series is a resource for urban studies and geography research worldwide. It provides a unique and innovative resource for the latest developments in the field, nurturing a comprehensive and encompassing publication venue for urban studies, urban geography, planning and regional development.The series publishes peer-reviewed volumes related to urbanization, sustainability, urban environments, sustainable urbanism, governance, globalization, urban and sustainable development, spatial and area studies, urban management, urban infrastructure, urban dynamics, green cities and urban landscapes. It also invites research which documents urbanization processes and urban dynamics on a national, regional and local level, welcoming case studies, as well as comparative and applied research.The series will appeal to urbanists, geographers, planners, engineers, architects, policy makers, and to all of those interested in a wide-ranging overview of contemporary urban studies and innovations in the field. It accepts monographs, edited volumes and textbooks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.