Three isolates of Tomato torrado virus (ToTV) were found in Poland. The isolates were characterized on the basis of their symptomatology on plant species, serological reactions, electron microscopy, and nucleotide and amino acid sequence analyses of coat protein subunit genes. In comparative tests, the Polish ToTV isolates were shown to be closely related to each other and also to the isolate from Spain.
In Poland in 2002 and 2005 two different isolates of Pepino mosaic virus signed PepMV-SW and PepMV-PK were obtained. Both isolates were compared on the basis of their symptomatology on a series of plant species. In addition, the isolates were characterized by the nucleotide sequence analysis of the triple gene block, coat protein and a part of the polymerase genes. The studies showed that the Polish isolates differ from each other and belong to two strains. PepMV-SW was highly similar to European isolates, showing extensive sequence identity, ca.
Tomato black ring virus (TBRV) is the only member of the Nepovirus genus that is known to form defective RNA particles (D RNAs) during replication. Here, de novo generation of D RNAs was observed during prolonged passages of TBRV isolates originated from Solanum lycopersicum and Lactuca sativa in Chenopodium quinoa plants. D RNAs of about 500 nt derived by a single deletion in the RNA1 molecule and contained a portion of the 5' untranslated region and viral replicase, and almost the entire 3' non-coding region. Short regions of sequence complementarity were found at the 5' and 3' junction borders, which can facilitate formation of the D RNAs. Moreover, in this study we analyzed the effects of D RNAs on TBRV replication and symptoms development of infected plants. C. quinoa, S. lycopersicum, Nicotiana tabacum, and L. sativa were infected with the original TBRV isolates (TBRV-D RNA) and those containing additional D RNA particles (TBRV + D RNA). The viral accumulation in particular hosts was measured up to 28 days post inoculation by RT-qPCR. Statistical analyses revealed that D RNAs interfere with TBRV replication and thus should be referred to as defective interfering particles. The magnitude of the interference effect depends on the interplay between TBRV isolate and host species.
Recently, Pepino mosaic virus (PepMV) infections causing severe yellowing symptoms in tomato plants have been reported in glasshouse tomato crops. When studying this phenomenon in commercial glasshouses, two different types of yellowing symptoms, occurring in adjacent plants, were distinguished: interveinal leaf yellowing and yellow mosaics. After several weeks, the interveinal leaf yellowing symptoms gradually disappeared and the plant heads became green again, with yellow mosaic patterns on the leaves as an intermediate stage. The sequencing of multiple isolates causing interveinal leaf yellowing identified two point mutations, occurring in positions 155 and 166 of the coat protein (CP), as unique to the yellowing pathotype. Site-directed mutagenesis of infectious clones confirmed that both CP mutations are determinants of the interveinal leaf yellowing symptoms. Sequencing of CP clones from plants or plant parts with the yellow mosaic symptoms resulted in a mixture of wild-type and mutated sequences, whereas sequencing of CP clones from the green heads of recovered plants resulted in only wild-type sequences. Yellow mosaic symptoms could be reproduced by inoculation of an artificial 1:1 mixture of RNA transcripts from the wild-type and mutated infectious clones. These results show that the ratio of mutated versus wild-type sequences can determine the nature and severity of symptom development. The gradual recovery of the plants, which coincides with the disappearance of the yellowing mutations, suggests that selection pressure acts to the advantage of the wild-type virus. Experiments with wild-type and mutated infectious clones showed that reverse mutation events from mutant to wild-type occur and that the wild-type virus does not have a replicative advantage over the mutant. These results suggest that reverse mutation events occur, with subsequent selection pressure acting in favour of the wild-type virus in the growing plant parts, possibly related to a lower long-distance movement efficiency of the mutant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.