The ability to coordinate the timing of motor protein activation lies at the center of a wide range of cellular motile processes including endocytosis, cell division, and cancer cell migration. We show that calcium dramatically alters the conformation and activity of the myosin-VI motor implicated in pivotal steps of these processes. We resolved the change in motor conformation and in structural flexibility using single particle analysis of electron microscopic data and identified interacting domains using fluorescence spectroscopy. We discovered that calcium binding to calmodulin increases the binding affinity by a factor of 2,500 for a bipartite binding site on myosin-VI. The ability of calcium-calmodulin to seek out and bridge between binding site components directs a major rearrangement of the motor from a compact dormant state into a cargo binding primed state that is nonmotile. The lack of motility at high calcium is due to calmodulin switching to a higher affinity binding site, which leaves the original IQ-motif exposed, thereby destabilizing the lever arm. The return to low calcium can either restabilize the lever arm, required for translocating the cargobound motors toward the center of the cell, or refold the cargo-free motors into an inactive state ready for the next cellular calcium flux.unconventional myosin | electron microscopy | calmodulin I n human cells, cytoskeletal motor proteins move along microtubules and actin filaments to generate complex cellular functions that require a precise timing of motor activation and inactivation. Myosin-VI is thought to have unique properties because it is the only myosin in the human genome shown to move toward the minus end of actin filaments (1). Apart from its roles in the formation of stereocilia in cells of the auditory system (2, 3), membrane internalization (4-6), and delivery of membrane to the leading edge in migratory cells (7), myosin-VI is an early marker of cancer development, aggressiveness, and cancer-cell invasion because of its dramatically up-regulated expression in breast, lung, prostate, ovary, and gastresophagus carcinoma cells (7-11). How this motor might promote cancercell migration, proliferation, and survival is unknown.In migrating cells, localized calcium transients (∼50 nM to ∼10 μM) (12, 13) have been reported to play a multifunctional role in steering directional movement (14), cytoskeleton redistribution, and relocation of focal adhesions (15). The effect of calcium transients on the mobilization and cargo binding of myosin-VI and on its mechanical activation, however, are not understood. In the current model, the catalytic head domain hydrolyzes ATP, whereas the tail domain anchors the motor to specific compartments. In vitro studies have shown that calcium affects myosin-VI binding to phospholipids (6), as well as the kinetics and motility rate of the motor (16, 17). The underlying molecular mechanisms, however, are unknown. It has also been discussed that myosin-VI might be able to adopt an inactive folded state (18,19), perha...