Elektronisch veröffentlicht auf dem Publikationsserver der Universität Potsdam: http://opus.kobv. de/ubp/volltexte/2008/1640/ urn:nbn:de:kobv:517-opus-16402 [http://nbn-resolving.de/urn:nbn:de:kobv:517-opus16402] SummaryAs land-cover conversion continues to expand into ever more remote areas in the humid tropics, montane rainforests are increasingly threatened. In addition to the loss of biodiversity, land-use change potentially deteriorates regional water cycles, which may have undesirable effects for local populations such as decreased water supply during dry seasons, enhanced flooding in the rainy season, or deterioration of drinking water quality.Montane rainforests in the south Ecuadorian Andes are not only subject to man-made disturbances but also to naturally occurring landslides. I was interested in the impact of this ecosystem dynamics on a key parameter of the hydrologic cycle, the soil saturated hydraulic conductivity (synonym: permeability; Ks from here on), because it is a sensitive indicator for soil disturbances. Depending on the rainfall regime, the potential disturbance-induced decrease of Ks may become relevant for regional watersheds.My general objective was to quantify the effects of the regional natural and human disturbances on the saturated hydraulic conductivity and to describe the resulting spatialtemporal patterns. The main hypotheses were: 1) disturbances cause an apparent displacement of the less permeable soil layer towards the surface, either due to a loss of the permeable surface soil after land-sliding, or as a consequence of the surface soil compaction under cattle pastures; 2) 'recovery' from disturbance, either because of landslide re-vegetation or because of secondary succession after pasture abandonment, involves an apparent displacement of the less permeable layer back towards the original depth an 3) disturbances cause a simplification of the Ks spatial structure, i.e. the spatially dependent random variation diminishes; the subsequent recovery entails the re-establishment of the original structure.In my first study, I developed a synthesis of recent geostatistical research regarding its applicability to soil hydraulic data, including exploratory data analysis and variogram estimation techniques; I subsequently evaluated the results in terms of spatial prediction uncertainty. Concerning the exploratory data analysis, my main results were: 1) Gaussian uniand bivariate distributions of the log-transformed data; 2) the existence of significant local trends; 3) no need for robust estimation; 4) no anisotropic variation. I found partly considerable differences in covariance parameters resulting from different variogram estimation techniques, which, in the framework of spatial prediction, were mainly reflected in the spatial connectivity of the Ks-field. Ignoring the trend component and an arbitrary use of robust estimators, however, would have the most severe consequences in this respect.Regarding variogram modeling, I encouraged restricted maximum likelihood estimation becau...
[1] The investigation of throughfall patterns has received considerable interest over the last decades. And yet, the geographical bias of pertinent previous studies and their methodologies and approaches to data analysis cast a doubt on the general validity of claims regarding spatial and temporal patterns of throughfall. We employed 220 collectors in a 1-ha plot of semideciduous tropical rain forest in Panama and sampled throughfall during a period of 14 months. Our analysis of spatial patterns is based on 60 data sets, whereas the temporal analysis comprises 91 events. Both data sets show skewed frequency distributions. When skewness arises from large outliers, the classical, nonrobust variogram estimator overestimates the sill variance and, in some cases, even induces spurious autocorrelation structures. In these situations, robust variogram estimation techniques offer a solution. Throughfall in our plot typically displayed no or only weak spatial autocorrelations. In contrast, temporal correlations were strong, that is, wet and dry locations persisted over consecutive wet seasons. Interestingly, seasonality and hence deciduousness had no influence on spatial and temporal patterns. We argue that if throughfall patterns are to have any explanatory power with respect to patterns of near-surface processes, data analytical artifacts must be ruled out lest spurious correlation be confounded with causality; furthermore, temporal stability over the domain of interest is essential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.