Bromine and chlorine are almost ubiquitous in waste of electrical and electronic equipment (WEEE) and the knowledge of their content in the plastic fraction is an essential step for proper end of life management. The aim of this study is to compare the following analytical methods: energy dispersive X-ray fluorescence spectroscopy (ED-XRF), ion chromatography (IC), ion-selective electrodes (ISEs), and elemental analysis for the quantitative determination of chlorine and bromine in four real samples taken from different WEEE treatment plants, identifying the best analytical technique for waste management workers. Home-made plastic standard materials with known concentrations of chlorine or bromine have been used for calibration of ED-XRF and to test the techniques before the sample analysis. Results showed that IC and ISEs, based upon dissolution of the products of the sample combustion, have not always achieved a quantitative absorption of the analytes in the basic solutions and that bromine could be underestimated since several oxidation states occur after combustion. Elemental analysis designed for chlorine determination is subjected to strong interference from bromine and required frequent regeneration and recalibration of the measurement cell. The most reliable method seemed to be the non-destructive ED-XRF. Calibration with home-made standards, having a similar plastic matrix of the samples, enabled us to carry out quantitative determinations, which have been revealed to be satisfactorily accurate and precise. In all the analyzed samples a total concentration of chlorine and/or bromine between 0.6 and 4 w/w% was detected, compromising the feasibility of a mechanical recycling and suggesting the exploration of an alternative route for managing these plastic wastes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.