Abstract. In this paper, we present and analyze a novel global database of
soil infiltration measurements, the Soil Water Infiltration Global (SWIG)
database. In total, 5023 infiltration curves were collected across all
continents in the SWIG database. These data were either provided and quality
checked by the scientists who performed the experiments or they were
digitized from published articles. Data from 54 different countries were
included in the database with major contributions from Iran, China, and the USA.
In addition to its extensive geographical coverage, the collected
infiltration curves cover research from 1976 to late 2017. Basic information
on measurement location and method, soil properties, and land use was
gathered along with the infiltration data, making the database valuable for
the development of pedotransfer functions (PTFs) for estimating soil hydraulic
properties, for the evaluation of infiltration measurement methods, and for
developing and validating infiltration models. Soil textural information
(clay, silt, and sand content) is available for 3842 out of 5023 infiltration
measurements (∼ 76%) covering nearly all soil USDA textural classes
except for the sandy clay and silt classes. Information on land use is
available for 76 % of the experimental sites with agricultural land use as
the dominant type (∼ 40%). We are convinced that the SWIG database
will allow for a better parameterization of the infiltration process in land
surface models and for testing infiltration models. All collected data and
related soil characteristics are provided online in
*.xlsx and *.csv formats for reference, and we add a disclaimer that the
database is for public domain use only and can be copied freely by
referencing it. Supplementary data are available at
https://doi.org/10.1594/PANGAEA.885492 (Rahmati et al., 2018). Data
quality assessment is strongly advised prior to any use of this database.
Finally, we would like to encourage scientists to extend and update the SWIG database
by uploading new data to it.
International audienceThe concentrations of heavy metals in water, sediments, soil, roots, and shoots of five aquatic macrophytes species (Oenanthe sp., Juncus sp., Typha sp., Callitriche sp.1, and Callitriche sp.2) collected from a detention pond receiving stormwater runoff coming from a highway were measured to ascertain whether plants organs are characterized by differential accumulations and to evaluate the potential of the plant species as bioindicators of heavy metal pollution in urban stormwater runoff. Heavy metals considered for water and sediment analysis were Cd, Cr, Cu, Ni, Pb, Zn, and As. Heavy metals considered for plant and soil analysis were Cd, Ni, and Zn. The metal concentrations in water, sediments, plants, and corresponding soil showed that the studied site is contaminated by heavy metals, probably due to the road traffic. Results also showed that plant roots had higher metal content than aboveground tissues. The floating plants displayed higher metal accumulation than the three other rooted plants. Heavy metal concentrations measured in the organs of the rooted plants increased when metal concentrations measured in the soil increased. The highest metal bioconcentration factors (BCF) were obtained for cadmium and nickel accumulation by Typha sp. (BCF = 1.3 and 0.8, respectively) and zinc accumulation by Juncus sp. (BCF = 4.8). Our results underline the potential use of such plant species for heavy metal biomonitoring in water, sediments, and soil
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.