Various T cell adhesion molecules and their cognate receptors on target cells promote T cell receptor (TCR)–mediated cell killing. In this report, we demonstrate that the interaction of epithelial cell marker E-cadherin with integrin αE(CD103)β7, often expressed by tumor-infiltrating lymphocytes (TILs), plays a major role in effective tumor cell lysis. Indeed, we found that although tumor-specific CD103+ TIL-derived cytotoxic T lymphocyte (CTL) clones are able to kill E-cadherin+/intercellular adhesion molecule 1− autologous tumor cells, CD103− peripheral blood lymphocyte (PBL)-derived counterparts are inefficient. This cell killing is abrogated after treatment of the TIL clones with a blocking anti-CD103 monoclonal antibody or after targeting E-cadherin in the tumor using ribonucleic acid interference. Confocal microscopy analysis also demonstrated that αEβ7 is recruited at the immunological synapse and that its interaction with E-cadherin is required for cytolytic granule polarization and subsequent exocytosis. Moreover, we report that the CD103− profile, frequently observed in PBL-derived CTL clones and associated with poor cytotoxicity against the cognate tumor, is up-regulated upon TCR engagement and transforming growth factor β1 treatment, resulting in strong potentiation of antitumor lytic function. Thus, CD8+/CD103+ tumor-reactive T lymphocytes infiltrating epithelial tumors most likely play a major role in antitumor cytotoxic response through αEβ7–E-cadherin interactions.
NK cells are able to discriminate between normal cells and cells that have lost MHC class I (MHC-I) molecule expression as a result of tumor transformation. This function is the outcome of the capacity of inhibitory NK receptors to block cytotoxicity upon interaction with their MHC-I ligands expressed on target cells. To investigate the role of human NK cells and their various receptors in the control of MHC-I-deficient tumors, we have isolated several NK cell clones from lymphocytes infiltrating an adenocarcinoma lacking beta2-microglobulin expression. Unexpectedly, although these clones expressed NKG2D and mediated a strong cytolytic activity toward K562, Daudi and allogeneic MHC-class I+ carcinoma cells, they were unable to lyse the autologous MHC-I- tumor cell line. This defect was associated with alterations in the expression of natural cytotoxicity receptor (NCR) by NK cells and the NKG2D ligands, MHC-I-related chain A, MHC-I-related chain B, and UL16 binding protein 1, and the ICAM-1 by tumor cells. In contrast, the carcinoma cell line was partially sensitive to allogeneic healthy donor NK cells expressing high levels of NCR. Indeed, this lysis was inhibited by anti-NCR and anti-NKG2D mAbs, suggesting that both receptors are required for the induced killing. The present study indicates that the MHC-I-deficient lung adenocarcinoma had developed mechanisms of escape from the innate immune response based on down-regulation of NCR and ligands required for target cell recognition.
The precise role of a-actinin-4 encoding gene (ACTN4) is not very well understood. It has been reported to elicit tumor suppressor activity and to regulate cellular motility. To further assess the function of human ACTN4, we studied a lung carcinoma cell line expressing a mutated aactinin-4, which is recognized as a tumor antigen by autologous CD8 þ cytotoxic T lymphocytes (CTL). Confocal immunofluorescence microscopy indicated that, while wild-type (WT) a-actinin-4 stains into actin cytoskeleton and cell surface ruffles, the mutated protein is only dispersed in the cytoplasm of the lung carcinoma cells. This loss of association with the cell surface did not appear to correlate with a decrease in in vitro a-actinin-4 crosslinking to filamentous (F)-actin. Interestingly, experiments using cell lines stably expressing ACTN4 demonstrated that as opposed to WT gene, mutant ACTN4 was unable to inhibit tumor cell growth in vitro and in vivo. Moreover, the expression of mutant a-actinin-4 resulted in the loss of tumor cell capacity to migrate. The identification of an inactivating mutation in ACTN4 emphasizes its role as a tumor suppressor gene and underlines the involvement of cytoskeleton alteration in tumor development and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.