The morphology and cytoskeletal structure of fibroblasts, endothelial cells, and neutrophils are documented for cells cultured on surfaces with stiffness ranging from 2 to 55,000 Pa that have been laminated with fibronectin or collagen as adhesive ligand. When grown in sparse culture with no cell-cell contacts, fibroblasts and endothelial cells show an abrupt change in spread area that occurs at a stiffness range around 3,000 Pa. No actin stress fibers are seen in fibroblasts on soft surfaces, and the appearance of stress fibers is abrupt and complete at a stiffness range coincident with that at which they spread. Upregulation of alpha5 integrin also occurs in the same stiffness range, but exogenous expression of alpha5 integrin is not sufficient to cause cell spreading on soft surfaces. Neutrophils, in contrast, show no dependence of either resting shape or ability to spread after activation when cultured on surfaces as soft as 2 Pa compared to glass. The shape and cytoskeletal differences evident in single cells on soft compared to hard substrates are eliminated when fibroblasts or endothelial cells make cell-cell contact. These results support the hypothesis that mechanical factors impact different cell types in fundamentally different ways, and can trigger specific changes similar to those stimulated by soluble ligands.
The mechanical properties of substrates underlying cells can have profound effects on cell structure and function. To examine the effect of substrate deformability on neuronal cell growth, proteinlaminated polyacrylamide gels were prepared with differing amounts of bisacrylamide to generate substrates of varying deformability with elastic moduli ranging from 500 to 5500 dyne/cm 2 . Mouse spinal cord primary neuronal cells were plated on the gels and allowed to grow and extend neurites for several weeks in culture. While neurons grew well on the gels, glia, which are normally cocultured with the neurons, did not survive on these deformable substrates even though the chemical environment was permissive for their growth. Substrate flexibility also had a significant effect on neurite branching. Neurons grown on softer substrates formed more than three times as many branches as those grown on stiffer gels. These results show that mechanical properties of the substrate specifically direct the formation of neurite branches, which are critical for appropriate synaptic connections during development and regeneration.
Cross-talk between G protein-coupled receptor (GPCR) and epidermal growth factor receptor (EGFR) signaling systems is widely established in a variety of normal and transformed cell types. Here, we demonstrate that the EGFR transactivation signal requires metalloproteinase cleavage of epidermal growth factorlike growth factor precursors in fibroblasts, ACHN kidney, and TccSup bladder carcinoma cells. Furthermore, we present evidence that blockade of the metalloproteinase-disintegrin tumor necrosis factor-␣-converting enzyme (TACE/ADAM17) by a dominant negative ADAM17 mutant prevents angiotensin II-stimulated pro-HB-EGF cleavage, EGFR activation, and cell proliferation in ACHN tumor cells. Moreover, we found that in TccSup cancer cells, the lysophosphatidic acid-induced transactivation signal is mediated by ADAM15, demonstrating that distinct combinations of growth factor precursors and ADAMs (a disintegrin and metalloproteinases) regulate GPCR-EGFR cross-talk pathways in cell lines derived from urogenital cancer. Our data show further that activation of ADAMs results in discrete cellular responses; whereas GPCR agonists promote activation of the Ras/MAPK pathway and cell proliferation via the EGFR in fibroblasts and ACHN cells, EGFR transactivation pathways regulate activation of the survival mediator Akt/protein kinase B and the susceptibility of fibroblasts and TccSup bladder carcinoma cells to proapoptotic signals such as serum deprivation, death receptor stimulation, and the chemotherapeutic drug doxorubicin. Thus, ADAM15 and -17 function as effectors of GPCR-mediated signaling and define critical characteristics of cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.