Signalling through G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTK) is involved in the regulation of essential cellular processes and its deregulation is associated with tumorigenesis in vitro and in vivo. We investigated pathophysiological processes that are regulated by GPCR pathways in human kidney and bladder cancer cell lines. Our results show that GPCR ligands induce tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) as well as downstream signalling events such as recruitment of the adapter protein Shc and activation of the mitogen-activated protein kinases (MAPK) ERK1/2, JNK and p38. Moreover, we report that the EGFR transactivation signal involves the EGFR ligands amphiregulin, HB-EGF and TGFa as well as the metalloproteinases ADAM 10, 15 and 17, depending on the cellular system. Finally, we demonstrate that EGFR transactivation is part of a regulatory system that modulates the migratory and invasive behaviour of kidney and bladder cancer cells. In conclusion, our findings demonstrate that metalloproteinase-mediated transactivation of the EGFR is a key mechanism of the cellular signalling network that promotes MAPK activation as well as tumour cell migration and invasion in response to a variety of physiologically relevant GPCR ligands, and therefore represents a novel target for cancer intervention strategies.
Cross-talk between G protein-coupled receptor (GPCR) and epidermal growth factor receptor (EGFR) signaling systems is widely established in a variety of normal and transformed cell types. Here, we demonstrate that the EGFR transactivation signal requires metalloproteinase cleavage of epidermal growth factorlike growth factor precursors in fibroblasts, ACHN kidney, and TccSup bladder carcinoma cells. Furthermore, we present evidence that blockade of the metalloproteinase-disintegrin tumor necrosis factor-␣-converting enzyme (TACE/ADAM17) by a dominant negative ADAM17 mutant prevents angiotensin II-stimulated pro-HB-EGF cleavage, EGFR activation, and cell proliferation in ACHN tumor cells. Moreover, we found that in TccSup cancer cells, the lysophosphatidic acid-induced transactivation signal is mediated by ADAM15, demonstrating that distinct combinations of growth factor precursors and ADAMs (a disintegrin and metalloproteinases) regulate GPCR-EGFR cross-talk pathways in cell lines derived from urogenital cancer. Our data show further that activation of ADAMs results in discrete cellular responses; whereas GPCR agonists promote activation of the Ras/MAPK pathway and cell proliferation via the EGFR in fibroblasts and ACHN cells, EGFR transactivation pathways regulate activation of the survival mediator Akt/protein kinase B and the susceptibility of fibroblasts and TccSup bladder carcinoma cells to proapoptotic signals such as serum deprivation, death receptor stimulation, and the chemotherapeutic drug doxorubicin. Thus, ADAM15 and -17 function as effectors of GPCR-mediated signaling and define critical characteristics of cancer cells.
Despite sympathetic blockade, sTEA does not increase airway obstruction and evokes only a small decrease in FEV1 as a sign of mild respiratory motor blockade with no difference between ropivacaine and bupivacaine. Therefore, sTEA can be used in patients with severe chronic obstructive pulmonary disease and asthma undergoing chest wall surgery as an alternative technique to general anesthesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.