Currently available quantum computing hardware platforms have limited 2-qubit connectivity among their addressable qubits. In order to run a generic quantum algorithm on such a platform, one has to transform the initial logical quantum circuit describing the algorithm into an equivalent one that obeys the connectivity restrictions.In this work we construct a circuit synthesis scheme that takes as input the qubit connectivity graph and a quantum circuit over the gate set generated by {CNOT, RZ } and outputs a circuit that respects the connectivity of the device. As a concrete application, we apply our techniques to Google's Bristlecone 72-qubit quantum chip connectivity, IBM's Tokyo 20-qubit quantum chip connectivity, and Rigetti's Acorn 19-qubit quantum chip connectivity. In addition, we also compare the performance of our scheme as a function of sparseness of randomly generated quantum circuits.
High frequency screening of populations has been proposed as a strategy in facilitating control of the COVID-19 pandemic. Here we use computational modeling, coupled with clinical data from a rapid antigen test, to predict the impact of frequent rapid testing on COVID-19 spread and outcomes. Using patient nasopharyngeal swab specimens, we demonstrate that the sensitivity and specificity of the rapid antigen test compared to quantitative real-time polymerase chain reaction (qRT-PCR) are 84.7% and 85.7%, respectively; moreover, sensitivity correlates directly with viral load. Based on COVID-19 data from three regions in the United States and Sao Jose do Rio Preto, Brazil, we show that high frequency, strategic population-wide rapid testing, even at varied accuracy levels, diminishes COVID-19 infections, hospitalizations, and deaths at a fraction of the cost of nucleic acid detection via qRT-PCR. We propose large-scale antigen-based surveillance as a viable strategy to control SARS-CoV-2 spread and to enable societal re-opening.
High frequency screening of populations has been proposed as a strategy in facilitating control of the COVID-19 pandemic. We use computational modeling, coupled with clinical data from rapid antigen tests, to predict the impact of frequent viral antigen rapid testing on COVID-19 spread and outcomes. Using patient nasal or nasopharyngeal swab specimens, we demonstrate that the sensitivity/specificity of two rapid antigen tests compared to quantitative real-time polymerase chain reaction (qRT-PCR) are 80.0%/91.1% and 84.7%/85.7%, respectively; moreover, sensitivity correlates directly with viral load. Based on COVID-19 data from three regions in the United States and São José do Rio Preto, Brazil, we show that high frequency, strategic population-wide rapid testing, even at varied accuracy levels, diminishes COVID-19 infections, hospitalizations, and deaths at a fraction of the cost of nucleic acid detection via qRT-PCR. We propose large-scale antigen-based surveillance as a viable strategy to control SARS-CoV-2 spread and to enable societal re-opening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.