Background In the current phase of the COVID-19 pandemic, we are witnessing the most massive vaccine rollout in human history. Like any other drug, vaccines may cause unexpected side effects, which need to be investigated in a timely manner to minimize harm in the population. If not properly dealt with, side effects may also impact public trust in the vaccination campaigns carried out by national governments. Objective Monitoring social media for the early identification of side effects, and understanding the public opinion on the vaccines are of paramount importance to ensure a successful and harmless rollout. The objective of this study was to create a web portal to monitor the opinion of social media users on COVID-19 vaccines, which can offer a tool for journalists, scientists, and users alike to visualize how the general public is reacting to the vaccination campaign. Methods We developed a tool to analyze the public opinion on COVID-19 vaccines from Twitter, exploiting, among other techniques, a state-of-the-art system for the identification of adverse drug events on social media; natural language processing models for sentiment analysis; statistical tools; and open-source databases to visualize the trending hashtags, news articles, and their factuality. All modules of the system are displayed through an open web portal. Results A set of 650,000 tweets was collected and analyzed in an ongoing process that was initiated in December 2020. The results of the analysis are made public on a web portal (updated daily), together with the processing tools and data. The data provide insights on public opinion about the vaccines and its change over time. For example, users show a high tendency to only share news from reliable sources when discussing COVID-19 vaccines (98% of the shared URLs). The general sentiment of Twitter users toward the vaccines is negative/neutral; however, the system is able to record fluctuations in the attitude toward specific vaccines in correspondence with specific events (eg, news about new outbreaks). The data also show how news coverage had a high impact on the set of discussed topics. To further investigate this point, we performed a more in-depth analysis of the data regarding the AstraZeneca vaccine. We observed how media coverage of blood clot–related side effects suddenly shifted the topic of public discussions regarding both the AstraZeneca and other vaccines. This became particularly evident when visualizing the most frequently discussed symptoms for the vaccines and comparing them month by month. Conclusions We present a tool connected with a web portal to monitor and display some key aspects of the public’s reaction to COVID-19 vaccines. The system also provides an overview of the opinions of the Twittersphere through graphic representations, offering a tool for the extraction of suspected adverse events from tweets with a deep learning model.
Pretrained transformer-based models, such as BERT and its variants, have become a common choice to obtain state-of-the-art performances in NLP tasks. In the identification of Adverse Drug Events (ADE) from social media texts, for example, BERT architectures rank first in the leaderboard. However, a systematic comparison between these models has not yet been done. In this paper, we aim at shedding light on the differences between their performance analyzing the results of 12 models, tested on two standard benchmarks.SpanBERT and PubMedBERT emerged as the best models in our evaluation: this result clearly shows that span-based pretraining gives a decisive advantage in the precise recognition of ADEs, and that in-domain language pretraining is particularly useful when the transformer model is trained just on biomedical text from scratch.
Adverse Drug Event (ADE) extraction models can rapidly examine large collections of social media texts, detecting mentions of drugrelated adverse reactions and trigger medical investigations. However, despite the recent advances in NLP, it is currently unknown if such models are robust in face of negation, which is pervasive across language varieties.In this paper we evaluate three state-of-the-art systems, showing their fragility against negation, and then we introduce two possible strategies to increase the robustness of these models: a pipeline approach, relying on a specific component for negation detection; an augmentation of an ADE extraction dataset to artificially create negated samples and further train the models.We show that both strategies bring significant increases in performance, lowering the number of spurious entities predicted by the models. Our dataset and code will be publicly released to encourage research on the topic.
The alarming spread of fake news in social media, together with the impossibility of scaling manual fact verification, motivated the development of natural language processing techniques to automatically verify the veracity of claims. Most approaches perform a claimevidence classification without providing any insights about why the claim is trustworthy or not. We propose, instead, a model-agnostic framework that consists of two modules: (1) a span extractor, which identifies the crucial information connecting claim and evidence; and (2) a classifier that combines claim, evidence, and the extracted spans to predict the veracity of the claim. We show that the spans are informative for the classifier, improving performance and robustness. Tested on several state-of-the-art models over the FEVER dataset, the enhanced classifiers consistently achieve higher accuracy while also showing reduced sensitivity to artifacts in the claims.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.