Algorithmic complexity vulnerabilities occur when the worstcase time/space complexity of an application is signi cantly higher than the respective average case for particular usercontrolled inputs. When such conditions are met, an attacker can launch Denial-of-Service attacks against a vulnerable application by providing inputs that trigger the worst-case behavior. Such attacks have been known to have serious e ects on production systems, take down entire websites, or lead to bypasses of Web Application Firewalls.
Recent work on the lottery ticket hypothesis has produced highly sparse Transformers for NMT while maintaining BLEU. However, it is unclear how such pruning techniques affect a model's learned representations. By probing sparse Transformers, we find that complex semantic information is first to be degraded. Analysis of internal activations reveals that higher layers diverge most over the course of pruning, gradually becoming less complex than their dense counterparts. Meanwhile, early layers of sparse models begin to perform more encoding. Attention mechanisms remain remarkably consistent as sparsity increases.
The alarming spread of fake news in social media, together with the impossibility of scaling manual fact verification, motivated the development of natural language processing techniques to automatically verify the veracity of claims. Most approaches perform a claimevidence classification without providing any insights about why the claim is trustworthy or not. We propose, instead, a model-agnostic framework that consists of two modules: (1) a span extractor, which identifies the crucial information connecting claim and evidence; and (2) a classifier that combines claim, evidence, and the extracted spans to predict the veracity of the claim. We show that the spans are informative for the classifier, improving performance and robustness. Tested on several state-of-the-art models over the FEVER dataset, the enhanced classifiers consistently achieve higher accuracy while also showing reduced sensitivity to artifacts in the claims.
Recent work on the lottery ticket hypothesis has produced highly sparse Transformers for NMT while maintaining BLEU. However, it is unclear how such pruning techniques affect a model's learned representations. By probing Transformers with more and more lowmagnitude weights pruned away, we find that complex semantic information is first to be degraded. Analysis of internal activations reveals that higher layers diverge most over the course of pruning, gradually becoming less complex than their dense counterparts. Meanwhile, early layers of sparse models begin to perform more encoding. Attention mechanisms remain remarkably consistent as sparsity increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.