Improved approaches for the detection of common epithelial malignancies are urgently needed to reduce the worldwide morbidity and mortality caused by cancer. MicroRNAs (miRNAs) are small (Ϸ22 nt) regulatory RNAs that are frequently dysregulated in cancer and have shown promise as tissue-based markers for cancer classification and prognostication. We show here that miRNAs are present in human plasma in a remarkably stable form that is protected from endogenous RNase activity. miRNAs originating from human prostate cancer xenografts enter the circulation, are readily measured in plasma, and can robustly distinguish xenografted mice from controls. This concept extends to cancer in humans, where serum levels of miR-141 (a miRNA expressed in prostate cancer) can distinguish patients with prostate cancer from healthy controls. Our results establish the measurement of tumorderived miRNAs in serum or plasma as an important approach for the blood-based detection of human cancer.biomarker ͉ miR-141 ͉ plasma ͉ serum ͉ prostate cancer T he development of minimally invasive tests for the detection and monitoring of common epithelial malignancies could greatly reduce the worldwide health burden of cancer (1). Although conventional strategies for blood-based biomarker discovery (e.g., using proteomic technologies) have shown promise, the development of clinically validated cancer detection markers remains an unmet challenge for many common human cancers (2). New approaches that can complement and improve on current strategies for cancer detection are urgently needed.MicroRNAs (miRNAs) are small (typically Ϸ22 nt in size) regulatory RNA molecules that function to modulate the activity of specific mRNA targets and play important roles in a wide range of physiologic and pathologic processes (3, 4). We hypothesized that miRNAs could be an ideal class of blood-based biomarkers for cancer detection because: (i) miRNA expression is frequently dysregulated in cancer (5, 6), (ii) expression patterns of miRNAs in human cancer appear to be tissue-specific (7), and (iii) miRNAs have unusually high stability in formalin-fixed tissues (8-10). This third point led us to speculate that miRNAs may have exceptional stability in plasma and serum as well. We show here that miRNAs are in fact present in clinical samples of plasma and serum in a remarkably stable form. Furthermore, we establish proof-ofprinciple for blood-based miRNA cancer detection by using both a xenograft model system and clinical serum specimens from patients with prostate cancer. Our results lay the foundation for the development of miRNAs as a novel class of blood-based cancer biomarkers and raise provocative questions regarding the mechanism of stability and potential biological function of circulating miRNAs. Results Identification and Molecular Cloning of Endogenous miRNAs fromHuman Plasma. Prior reports have suggested that RNA from human plasma (the noncellular component of blood remaining after removing cells by centrifugation) is largely of low molecular weight (11). W...
c‐Crk is a proto‐oncogene product composed largely of Src homology (SH) 2 and 3 domains. We have identified a kinase activity, which binds to the first Crk SH3 domain and phosphorylates c‐Crk on tyrosine 221 (Y221), as c‐Abl. c‐Abl has a strong preference for c‐Crk, when compared with common tyrosine kinase substrates. The phosphorylation of c‐Crk Y221 creates a binding site for the Crk SH2 domain. Bacterially expressed c‐Crk protein lacks phosphorylation on Y221 and can bind specifically to several proteins, while mammalian c‐Crk, which is phosphorylated on tyrosine, remains uncomplexed. The protein binding activity of c‐Crk is therefore likely regulated by a mechanism similar to that of the Src family kinases. v‐Crk is truncated before c‐Crk Y221 and forms constitutive complexes with c‐Abl and other proteins. Our results suggest that c‐Abl regulates c‐Crk function and that it could be involved in v‐Crk transformation.
Purpose: Squamous cell carcinoma of the oral cavity is one of the most common human neoplasms, and prevention of these carcinomas requires a better understanding of the carcinogenesis process and a model system in which cancer chemoprevention agents can be tested. We have developed a mouse model using the carcinogen 4-nitroquinoline 1-oxide (4-NQO) in the drinking water to induce tumorigenesis in the mouse oral cavity.Experimental Design: 4-NQO was delivered by tongue painting or drinking water to two mouse strains, CBA and C57Bl/6. The incidences of oral cavity carcinogenesis were then compared. In addition, we examined the expression of some of the molecular markers associated with the process of human oral cavity and esophageal carcinogenesis, such as keratin (K) 1, K14, p16, and epidermal growth factor receptor, by immunohistochemistry.Results: After treatment with 4-NQO in the drinking water, massive tumors were observed on the tongues of both CBA and C57Bl/6 female mice. Pathological analyses indicated that flat squamous dysplasias, exophytic papillary squamous tumors (papillomas), and invasive squamous cell carcinomas were present. Immunohistochemistry analyses showed that 4-NQO changed the expression patterns of the intermediate filament proteins K14 and K1. K14 was expressed in the epithelial suprabasal layers, in addition to the basal layer, in tongues from carcinogen-treated animals. In contrast, control animals expressed K14 only in the basal layer. Moreover, we observed more bromodeoxyuridine staining in the tongue epithelia of 4-NQO-treated mice. Reduced expression of the cell cycle inhibitor, p16, was observed, whereas 4-NQO treatment caused an increase in epidermal growth factor receptor expression in the mouse tongues. Interestingly, similar features of carcinogenesis, including multiple, large (up to 0.5 cm) exophytic papillary squamous tumors and invasive squamous cell carcinomas, increased bromodeoxyuridine staining, and increased K14 expression, were also observed in the esophagi of 4-NQOtreated mice. However, no tumors were observed in the remainder of digestive tract (including the forestomach, intestine, and colon) or in the lungs or livers of 4-NQOtreated mice. These results indicate that this murine 4-NQOinduced oral and esophageal carcinogenesis model simulates many aspects of human oral cavity and esophageal carcinogenesis.Conclusions: The availability of this mouse model should permit analysis of oral cavity and esophageal cancer development in various mutant and transgenic mouse strains. This model will also allow testing of cancer chemopreventive drugs in various transgenic mouse strains.
Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of >10 million SNPs in 43,303prostate cancer cases and 43,737 controls from studies in populations of European, African, Japanese and Latino ancestry. Twenty-three novel susceptibility loci were revealed at P<5×10-8; 15 variants were identified among men of European ancestry, 7 from multiethnic analyses and one was associated with early-onset prostate cancer. These 23 variants, in combination with the known prostate cancer risk variants, explain 33% of the familial risk of the disease in European ancestry populations. These findings provide new regions for investigation into the pathogenesis of prostate cancer and demonstrate the utility of combining ancestrally diverse populations to discover risk loci for disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.