We have purified and determined functional parameters of reconstituted, recombinant HIV‐1 reverse transcriptase (RT) heterodimers within which either the p66 or p51 polypeptide was selectively mutated in one or both aspartic acid residues constituting the proposed polymerase active site (‐Y‐M‐D‐D‐). Heterodimers containing a mutated p51 polypeptide retain almost wild type levels of both RNA‐dependent DNA polymerase and ribonuclease H (RNaseH) activity. In contrast, heterodimers whose p66 polypeptide was likewise mutated exhibit wild type RNaseH activity but are deficient in RNA‐dependent DNA polymerase activity. These results indicate that in heterodimer RT, the p51 component cannot compensate for active site mutations eliminating the activity of p66, indirectly implying that solely the p66 aspartic acid residues of heterodimer are crucial for catalysis.
The sequence of the gyrase B subunit gene from Staphylococcus aureus strains resistant to the gyrase B subunit inhibitors cyclothialidine, coumermycin, and novobiocin has been determined. The residues altered in the resistant gyrase B subunits map to the ATP-binding region, suggesting that the drugs inhibit ATP binding and hydrolysis. The pattern of cross-resistances indicates that the detailed binding mode of the compounds differs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.