An Escherichia coli expression system overproducing the bacterial chaperones GroES and GroEL was engineered and has been successfully used to produce large quantities of the recombinant human protein-tyrosine kinase pSOcsk. The co-overproduction of the two chaperones with p5Ocsk results in increased solubility of the kinase and allows purification of milligram amounts of active enzyme. Analysis of the purified protein by SDS/polyacrylamide gel electrophoresis reveals a single band with an apparent molecular mass of 50 kDa, indicating that recombinant human p5Ocsk has been purified to near homogeneity. The purified enzyme displays tyrosine kinase activity as measured by both autophosphorylation and phosphorylation of exogenous substrates. Biochemical properties, including in vitro substrate specificity and enzymatic characteristics of the enzyme, have been assessed and compared with those of members of the Src family of protein-tyrosine kinases. Results indicate that p5Ocsk and p56kk have different substrate specificities and that p59csk and p60csrc have similar kinetic parameters. The
The prenyltransferase undecaprenyl pyrophosphate synthetase (di-trans,poly-cis-decaprenylcistransferase; EC2.5.1.31
) was purified from the soluble fraction of Escherichia coli by TSK-DEAE, ceramic hydroxyapatite, TSK-ether, Superdex 200, and heparin-Actigel chromatography. The protein was labeled with the photolabile analogue of the farnesyl pyrophosphate analogue (E,E)-[1-3H]-(2-diazo-3-trifluoropropionyloxy)geranyl diphos-phate and was detected on a sodium dodecyl sulfate-polyacrylamide gel as a protein with an apparent molecular mass of 29 kDa. This protein band was cut out from the gel, trypsin digested, and subjected to matrix-assisted laser desorption ionization mass spectrometric analysis. Comparison of the experimental data with computer-simulated trypsin digest data for all E. coliproteins yielded a single match with a protein of unassigned function (SWISS-PROT Q47675
; YAES_ECOLI). Sequences with strong similarity indicative of homology to this protein were identified in 25 bacterial species, in Saccharomyces cerevisiae, and inCaenorhabditis elegans. The homologous genes (uppS) were cloned from E. coli,Haemophilus influenzae, and Streptococcus pneumoniae, expressed in E. coli as amino-terminal His-tagged fusion proteins, and purified over a Ni2+ affinity column. An untagged version of the E. coli uppS gene was also cloned and expressed, and the protein purified in two chromatographic steps. We were able to detect Upp synthetase activity for all purified enzymes. Further, biochemical characterization revealed no differences between the recombinant untagged E. coli Upp synthetase and the three His-tagged fusion proteins. All enzymes were absolutely Triton X-100 and MgCl2 dependent. With the use of a regulatable gene disruption system, we demonstrated that uppS is essential for growth in S. pneumoniae R6.
Thirty-one aminocoumarin antibiotics derived from mutasynthesis experiments were investigated for their biological activities. Their inhibitory activities toward Escherichia coli DNA gyrase were determined in two different in vitro assays: an ATPase assay and a DNA supercoiling assay. The assays gave a similar rank order of the activities of the compounds tested, although the absolute 50% inhibitory concentrations (IC 50 s) obtained in each assay were different. To confirm that the compounds also acted as gyrase inhibitors in vivo, reporter gene assays were carried out with E. coli by using gyrA and sulA promoter fusions with the luxCDABE operon. A strong induction of both promoters was observed for those compounds that showed gyrase inhibitory activity in the biochemical assays. Compounds carrying analogs of the prenylated benzoyl moiety (ring A) of clorobiocin that were structurally very different showed high levels of activity both in the biochemical assay and in the reporter gene assay, indicating that the structure of this moiety can be varied considerably without a loss of affinity for bacterial gyrase. The experimentally determined IC 50 s were compared to the binding energies calculated in silico, which indicated that a shift of the pyrrole carboxylic acid moiety from the O-3؆ to the O-2؆ position of the deoxysugar moiety has a significant impact on the binding mode of the compounds. The aminocoumarin compounds were also investigated for their MICs against different bacterial pathogens. Several compounds showed high levels of activity against staphylococci, including a methicillin-resistant Staphylococcus aureus strain. However, they showed only poor activities against gram-negative strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.