In recent years, there has been a growing interest in developing biodegradable implants which are absorbed by the body after fulfilling a task. Pure iron is a candidate for such applications because it is considered biocompatible and it does not passivate in physiological media. Herein, the potential to increase the strength of pure iron through grain refinement is evaluated to allow a reduction in size of implants and its effect on corrosion behavior. High‐pressure torsion is applied to process pure iron and to refine the grain size of less than 1 μm. Annealing at different temperatures is used to produce samples with different grain sizes. Compression tests show a significant increase in flow stress to over 1 GPa in samples with very small grain sizes. However, such structure is associated with negligible strain hardening and strain‐rate sensitivity. Electrochemical and immersion tests in Hank's solution show that the grain refinement reduces the corrosion rate significantly. Samples with grain sizes smaller than 1 μm display uniform corrosion and develop a homogeneous surface layer of corrosion products. Thus, severe plastic deformation followed by annealing produces mechanically stronger pure iron with reduced biodegradability.
In the present paper, the corrosion behavior of 1020 carbon steel in commercial gasoline-ethanol blends was investigated. The composition of each gasoline-ethanol blend was evaluated by infrared spectroscopy, and the ethanol content was determined by the ABNT 13992 reference method. Electrochemical Impedance Spectroscopy (EIS) and polarization methods were employed to evaluate corrosion resistance and penetration rates. Statistical analyses revealed that the gasoline’s solution resistance governs the corrosion process, the RON (Research Octane Number) and MON (Motor Octane Number) numbers as well as the olefin content being more related to the corrosion rates. The polarization resistance had minor impact on the corrosion process.
ResumoAços inoxidáveis são ligas Fe-C-Cr com elevada resistência à corrosão. Estes podem receber diferentes elementos de liga, que alteram suas microestruturas e propriedades de acordo com o interesse da aplicação. Os mais comuns são os austeníticos, ferríticos, martensíticos e duplex. Os aços inoxidáveis austeníticos possuem excelente resistência à corrosão, elevada ductilidade, boa soldabilidade, conformabilidade e tenacidade. Os aços inoxidáveis ferríticos possuem boa resistência à corrosão, são bons para estampagem e possuem maior dureza e soldabilidade em relação aos austeníticos. Os aços inoxidáveis duplex (AID) são aços com estrutura bifásica, formados pelas fases ferrita e austenita, em proporções de aproximadamente 50% de cada. Os AIDs apresentam associação de resistência mecânica com resistência à corrosão. O presente trabalho tem como objetivo realizar ensaios metalográficos e tração de um AID 399B, de um aço inoxidável ferrítico 441A e de um aço inoxidável austenítico 304N, para fins de comparação da microestrutura e propriedades mecânicas. Com os resultados conclui-se que o AID possui maior resistência à dureza na escala HRB, o aço austenítico possui maior capacidade de alongamento, devido sua estrutura CFC. Já o limite de resistência e de escoamento são maiores no aço AID devido a sua maior proporção da fase ferrita (52%). Palavras-chave: Aços inoxidáveis duplex; Estrutura bifásica; Resistência à corrosão. CHARACTERIZATION OF STAINLESS STEEL DUPLEX IN COMPARISON AÇOS FERRITIC AND AUSTENITIC REGARDING THE MICROSTRUCTURE AND MECHANICAL PROPERTIES IN DRAW AbstractStainless steels are Fe-C-Cr alloys with high corrosion resistance. These can receive different alloying elements, which alter their microstructures and properties according to the application of interest. The most common are austenitic, ferritic, martensitic and duplex. The austenitic stainless steels have excellent corrosion resistance, high ductility, good weldability, formability and toughness. Ferritic stainless steels have good corrosion resistance, higher toughness and lower formability, welding compared to austenitic and are good for printing. Duplex stainless steels (DSS) are steels having a biphasic structure formed by ferrite and austenite phases in proportions of approximately 50% each. DSSs have mechanical strength of association with corrosion resistance. This study aims to conduct metallographic testing and draw a DSS 399B, a ferritic stainless steel 441A and an austenitic stainless steel 304N, for comparison of microstructure and mechanical properties. From the results it is concluded that DSS has higher resistance HRB in hardness scale, the austenitic steel has higher elongation, because CFC their structure. But the strength and yield strength are higher in duplex steel due to its higher proportion of ferrite phase (52%)..
ResumoA soldagem é um processo de união que envolve muitos fenômenos metalúrgicos que podem causar problemas práticos se não forem aplicados os princípios operacionais apropriados ao processo. O aço inoxidável ferrítico AISI 410S é uma liga de Fe-Cr que contêm em média 12,5% de cromo, isto melhora a resistência à corrosão, mas em parte sacrifica outras propriedades como a sua soldabilidade. Este estudo foi realizado através da deposição de um cordão de solda em duas chapas de aço AISI 410S pelo processo de eletrodo revestido, variando a energia de soldagem entre eles, onde se calculou a diluição de cada cordão depositado e a composição química da zona fundida de cada chapa. Além disso, foi avaliado através do diagrama de Shaeffler, as microestruturas formadas e os possíveis defeitos susceptíveis mediante os parâmetros utilizados nas chapas. Verificou-se que na chapa onde se aplicou baixa energia de soldagem não ocorreu o risco de defeitos. E na chapa que se aplicou alta energia houve a possibilidade de ocorrer fragilização e fissuração por formação de martensita. Salienta-se que a diluição foi maior nessa condição, mostrando que o controle da diluição em soldas é de grande importância por influenciar na qualidade do cordão de solda. Palavras-chave: Soldagem; Aço inoxidável ferrítico AISI 410S; Diluição. DILUTION STUDY ON JOINTS WELDED STEEL AISI 410S AbstractThe welding is a process of union involving many metallurgical phenomena that can cause practical problems if they are not applied operational principles appropriate to the process. The ferritic stainless steel AISI 410S is an Fe-Cr alloy containing on average 12.5% of chromium, that improves corrosion resistance, but partly sacrificing other properties such as their weldability. This study was carried out by depositing a weld bead on two steel plates AISI 410S by smaw process by varying the energy of welding between them, which is calculated dilution of each deposited bead and the chemical composition of the molten zone each plate. Furthermore, it was evaluated by Shaeffler diagram, the formed microstructures and possible defects likely due to the parameters used in the plates. It was found that the sheet where welding energy low applied not occur the risk of defects. And the plate was applied high energy welding there is a possibility of embrittlement and cracking formation of martensite. Please note that the dilution was higher in this condition, showing that the control of dilution in solders is of great importance to influence the quality of the weld bead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.