The basal ganglia (BG) are a highly organized network, where different parts are activated for specific functions and circumstances. The BG are involved in movement control, as well as associative learning, planning, working memory, and emotion. We concentrate on the "motor circuit" because it is the best understood anatomically and physiologically, and because Parkinson's disease is mainly thought to be a movement disorder. Normal function of the BG requires fine tuning of neuronal excitability within each nucleus to determine the exact degree of movement facilitation or inhibition at any given moment. This is mediated by the complex organization of the striatum, where the excitability of medium spiny neurons is controlled by several pre- and postsynaptic mechanisms as well as interneuron activity, and secured by several recurrent or internal BG circuits. The motor circuit of the BG has two entry points, the striatum and the subthalamic nucleus (STN), and an output, the globus pallidus pars interna (GPi), which connects to the cortex via the motor thalamus. Neuronal afferents coding for a given movement or task project to the BG by two different systems: (1) Direct disynaptic projections to the GPi via the striatum and STN. (2) Indirect trisynaptic projections to the GPi via the globus pallidus pars externa (GPe). Corticostriatal afferents primarily act to inhibit medium spiny neurons in the "indirect circuit" and facilitate neurons in the "direct circuit." The GPe is in a pivotal position to regulate the motor output of the BG. Dopamine finely tunes striatal input as well as neuronal striatal activity, and modulates GPe, GPi, and STN activity. Dopaminergic depletion in Parkinson's disease disrupts the corticostriatal balance leading to increased activity the indirect circuit and reduced activity in the direct circuit. The precise chain of events leading to increased STN activity is not completely understood, but impaired dopaminergic regulation of the GPe, GPi, and STN may be involved. The parkinsonian state is characterized by disruption of the internal balance of the BG leading to hyperactivity in the two main entry points of the network (striatum and STN) and excessive inhibitory output from the GPi. Replacement therapy with standard levodopa creates a further imbalance, producing an abnormal pattern of neuronal discharge and synchronization of neuronal firing that sustain the "off" and "on with dyskinesia" states. The effect of levodopa is robust but short-lasting and converts the parkinsonian BG into a highly unstable system, where pharmacological and compensatory effects act in opposing directions. This creates a scenario that substantially departs from the normal physiological state of the BG.
The pathophysiology of Parkinson's disease is reviewed in light of recent advances in the understanding of the functional organization of the basal ganglia (BG). Current emphasis is placed on the parallel interactions between corticostriatal and corticosubthalamic afferents on the one hand, and internal feedback circuits modulating BG output through the globus pallidus pars interna and substantia nigra pars reticulata on the other. In the normal BG network, the globus pallidus pars externa emerges as a main regulatory station of output activity. In the parkinsonian state, dopamine depletion shifts the BG toward inhibiting cortically generated movements by increasing the gain in the globus pallidus pars externa-subthalamic nucleus-globus pallidus pars interna network and reducing activity in "direct" cortico-putaminal-globus pallidus pars interna projections. Standard pharmacological treatments do not mimic the normal physiology of the dopaminergic system and, therefore, fail to restore a functional balance between corticostriatal afferents in the so-called direct and indirect pathways, leading to the development of motor complications. This review emphasizes the concept that the BG can no longer be understood as a "go-through" station in the control of movement, behavior, and emotions. The growing understanding of the complexity of the normal BG and the changes induced by DA depletion should guide the development of more efficacious therapies for Parkinson's disease.
Neurotrophins, as target-derived factors, are essential for neuronal survival during development, but during adulthood, their scope of actions widens to become also mediators of synaptic and morphological plasticity. Target disconnection by axotomy produces an initial synaptic stripping ensued by synaptic rearrangement upon target reinnervation. Using abducens motoneurons of the oculomotor system as a model for axotomy, we report that trophic support by brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) or a mixture of both, delivered to the stump of severed axons, results in either the prevention of synaptic stripping when administered immediately after lesion or in a promotion of reinnervation of afferents to abducens motoneurons once synaptic stripping had occurred, in concert with the recovery of synaptic potentials evoked from the vestibular nerve. Synaptotrophic effects, however, were larger when both neurotrophins were applied together. The axotomy-induced reduction in firing sensitivities related to eye movements were also restored to normal values when BDNF and NT-3 were administered, but discharge characteristics recovered in a complementary manner when only one neurotrophin was used. This is the first report to show selective retrograde trophic dependence of circuit-driven firing properties in vivo indicating that NT-3 restored the phasic firing, whereas BDNF supported the tonic firing of motoneurons during eye movement performance. Therefore, our data report a link between the synaptotrophic actions of neurotrophins, retrogradely delivered, and the alterations of neuronal firing patterns during motor behaviors. These trophic actions could be responsible, in part, for synaptic rearrangements that alter circuit stability and synaptic balance during plastic events of the brain.
We examined the expression of the three Trk receptors for neurotrophins (TrkA, TrkB, and TrkC) in the extraocular motor nuclei of the adult cat by using antibodies directed against the full-Trk proteins in combination with horseradish peroxidase retrograde tracing. The three receptors were present in all neuronal populations investigated, including abducens motoneurons and internuclear neurons, medial rectus motoneurons of the oculomotor nucleus, and trochlear motoneurons. They were also present in the vestibular and prepositus hypoglossi nuclei. TrkA, TrkB, and TrkC immunopositive cells were found in similar percentages in the oculomotor and in the trochlear nuclei. In the abducens nucleus, however, a significantly higher percentage of cells expressed TrkB than the other two receptors, among both motoneurons (81.8%) and internuclear neurons (88.4%). The percentages obtained for the three Trk receptors in identified neuronal populations pointed to the colocalization of two or three receptors in a large number of cells. We used confocal microscopy to elucidate the subcellular location of Trk receptors. In this case, abducens motoneurons and internuclear neurons were identified with antibodies against choline acetyltransferase and calretinin, respectively. We found a different pattern of staining for each neurotrophin receptor, suggesting the possibility that each receptor and its cognate ligand may use a different route for cellular signaling. Therefore, the expression of Trk receptors in oculomotor, trochlear, and abducens motoneurons, as well as abducens internuclear neurons, suggests that their associated neurotrophins may exert an influence on the normal operation of the oculomotor circuitry. The presence of multiple Trk receptors on individual cells indicates that they likely act in concert with each other to regulate distinct functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.