1. The existence of functional interrelationships between dorsal and ventral regions of the rat striatum was investigated. Kainic acid (KA) was employed to induce neuronal lesions in the more dorsal striatum, the caudate-putamen (CP). Only one CP (one side) received KA. KA-induced neurotoxicity at the site of injection (CP) was evidenced by reductions in choline-acetyltransferase activity and in GABA levels, and by increases in the ratios metabolite/monoamine for dopamine (DA) and serotonin (5-HT). 2. In addition to the well-known local effects, direct stereotaxic injection of KA into the CP produced distant effects in the ipsilateral olfactory tubercle (OT). A dose-dependent increase in the levels of 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) and decreases in DA and 5-HT concentrations were observed in the OT ipsilateral to the CP injected with KA. With 1, 2, 3, and 4 microg of KA, the ratio DOPAC+HVA/DA in the OT was 30, 79, 140, and 173% higher, respectively, than control levels. With 2, 3, and 4 microg of KA, the levels of 5-HIAA were approximately 30, 60, and 120% higher than control values, and the changes in 5-HIAA were associated with significant reductions in 5-HT concentrations. 3. Our results suggest that the dorsal part of the striatum exerts important regulatory functions over the most ventral striatal region, the OT. Destruction of CP interneurons by KA leads to disinhibition of DA and 5-HT activities to the OT. The functional interactions between dorsal and ventral striatal regions may play a role in the integration of fundamental life-preserving, motivational, and goal-directed olfactory motor behaviors of rodents.
During radiation therapy (RT) of glioblastoma, daily MRI with combination MRI–linear accelerator (MRI–Linac) systems has demonstrated significant anatomic changes, including evolving post-surgical cavity shrinkage. Cognitive function RT for brain tumors is correlated with radiation doses to healthy brain structures, especially the hippocampi. Therefore, this study investigates whether adaptive planning to the shrinking target could reduce normal brain RT dose with the goal of improving post-RT function. We evaluated 10 glioblastoma patients previously treated on a 0.35T MRI–Linac with a prescription of 60 Gy delivered in 30 fractions over six weeks without adaptation (“static plan”) with concurrent temozolomide chemotherapy. Six weekly plans were created per patient. Reductions in the radiation dose to uninvolved hippocampi (maximum and mean) and brain (mean) were observed for weekly adaptive plans. The dose (Gy) to the hippocampi for static vs. weekly adaptive plans were, respectively: max 21 ± 13.7 vs. 15.2 ± 8.2 (p = 0.003) and mean 12.5 ± 6.7 vs. 8.4 ± 4.0 (p = 0.036). The mean brain dose was 20.6 ± 6.0 for static planning vs. 18.7 ± 6.8 for weekly adaptive planning (p = 0.005). Weekly adaptive re-planning has the potential to spare the brain and hippocampi from high-dose radiation, possibly reducing the neurocognitive side effects of RT for eligible patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.