The coal-producing territories in the world are facing the production of renewable energy in their thermal systems. The production of biocoal has emerged as one of the most promising thermo-energetic conversion technologies, intended as an alternative fuel to coal. The aim of this research is to assess how the model of biomass to biocoal conversion in mining areas is applied for thermal systems engineering. The Central Asturian Coal Basin (CACB; Spain) is the study area. The methodology used allows for the analysis of the resource as well as the thermo-energetic conversion and the management of the bioenergy throughout the different phases in a process of analytical hierarchy. This is carried out using a multiphase mathematical algorithm based on the availability of resources, the thermo-energetic conversion, and the energy management in the area of study. Based on the working conditions, this research highlights the potential of forest biomass as a raw material for biocoal production as well as for electrical and thermal purposes. The selected node operates through the bioenergy-match mode, which has yielded outputs of 23 MWe and 172 MWth, respectively.
District heating and cooling (DHC) systems play an important role under the new European Union (EU) energy transition strategy. Thermal energy networks are helping to stimulate the development of alternative technologies based on a broad range of renewable energy sources. The present study analysed the current situation of DHC systems in Spain and provides an overview of the challenges and future opportunities that their use will entail. Its objective is to assess thermal energy conversion and management from a holistic perspective, including a study of existing energy infrastructures. The focus of this study lies on Spain given the country’s abundance of natural resources such as renewable energy sources including solar energy, biomass and geothermal energy, among others, as well as its strategic location on the map of the EU. Based on the analysis of the three factors for energy conversion in a district heating system, namely resources, technology, and management, the methodology provided an assessment of the different factors involved in running a DHC system. The results show an estimated total production for DHC networks of 1448 MWth, of which 72% is supplied purely by renewable energy sources.
Energy demand is steadily growing as society becomes more industrialised. Renewable energy sources (RES) have long been used for various applications by thermal energy systems in the European Union (EU). Biomass and solar energy represent important RES in the development of energy transition in some regions such as coal-mining areas of Europe. Bioenergy is a key renewable energy storage mechanism for solar energy which, when combined, can tackle many of the barriers to the use of solar energy. Against this background, this study evaluates the potential implementation of both biomass and solar energy for energy production in coal-mining areas in Spain as a direct alternative to coal. The shown methodology relies on a comprehensive analysis of existing resources and their conversion to thermal energy from a multi-parametric point of view. The obtained results show that the solar–biomass combination can be used for thermal energy systems as a challenging option. The theoretical total hybrid-modular systems if implemented in the study area are equivalent to 1165 MWth and supply thermal energy for 170,000 single-family houses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.