Overproduction of multidrug resistance (MDR) efflux pumps is involved in the resistance to a wide range of compounds in bacteria. These determinants extrude antibiotics, but also bacterial metabolites like quorum-sensing signals. Non-regulated extrusion of bacterial metabolites might produce a metabolic burden, so that MDR-overproducing mutants could have a reduced fitness when compared with their parental strains. To test such a possibility, we have compared the behaviour of two MDR Pseudomonas aeruginosa in vitro selected mutants (nalB and nfxB) with their isogenic parental strain with respect to some properties with potential relevance for the survival in the environment and the virulence of this bacterial species. Overproduction of the MDR determinants MexABOprM (nalB mutant) and MexCDOprJ (nfxB mutant) decreased the survival in water, the production of phenazines and proteases, and the virulence (using a Caenorhabditis elegans model system) of the P. aeruginosa mutants. In contrast, the capability of forming biofilms was not impaired. The simple models tested in the present work can enable the analysis of the fitness of large numbers of antibiotic-resistant bacteria by using more realistic approaches than the in vitro competition assays currently used.
We report the in-vitro susceptibility of 27 clinical isolates of Scedosporium apiospermum and 43 of Scedosporium prolificans. S. apiospermum was resistant to fluconazole and flucytosine, with variable susceptibility to amphotericin B, itraconazole, ketoconazole and susceptible to miconazole. Voriconazole was much more active than fluconazole and flucytosine, more active than amphotericin B, itraconazole and ketoconazole and was as active as miconazole against S. apiospermum isolates. Voriconazole and the other six antifungal agents showed low activity against S. prolificans isolates.
The degree of specialization in the legume-rhizobium mutualism and the variation in the response to different potential symbionts are crucial factors for understanding the process of invasion by exotic legumes and the consequences for the native resident plants and bacteria. The enhanced novel mutualism hypothesis predicts that exotic invasive legumes would take advantage of native rhizobia present in the invaded soils. However, recent studies have shown that exotic legumes might become invasive by using exotic introduced microsymbionts, and that they could be a source of exotic bacteria for native legumes. To unravel the role of novel and old symbioses in the progress of invasion, nodulation and symbiotic effectiveness were analyzed for exotic invasive plants and native co-occurring legumes in a Mediterranean coastal dune ecosystem. Although most of the studied species nodulated with bacteria from distant origins these novel mutualisms were less effective in terms of nodulation, nitrogenase activity and plant growth than the interactions of plants and bacteria from the same origin. The relative effect of exotic bradyrhizobia was strongly positive for exotic invasive legumes and detrimental for native shrubs. We conclude that (1) the studied invasive legumes do not rely on novel mutualisms but rather need the co-introduction of compatible symbionts, and (2) since exotic rhizobia colonize native legumes in invaded areas, the lack of effectiveness of these novel symbiosis demonstrated here suggests that invasion can disrupt native belowground mutualisms and reduce native legumes fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.