As a continuation of our research in the quinoxaline 1,4-di-N-oxide new series of 2-arylcarbonyl-3-trifluoromethylquinoxaline, 1,4-di-N-oxide derivatives have been synthesized and evaluated in a full panel of 60 human tumor cell lines. Selective reductions were carried out on two compounds which allowed us to determine the compound structures by comparison of the 1H NMR spectra. In general, all the di-N-oxidized compounds showed good cytotoxic parameters. The best activity was observed in derivatives with electron-withdrawing groups in position 6 or 7 on the quinoxaline ring and in the unsubstituted analogues, whereas loss of one or two oxygens reduced the cytotoxicity. The best five compounds were selected for evaluation for the in vivo hollow fiber assays. In vitro studies reveal that compound 5h efficiently generates reactive oxygen species via redox cycling in the presence of the NADPH/cytochrome P450 enzyme system, providing a plausible molecular mechanism for the observed aerobic cytotoxicity of these quinoxaline N-oxides.
For a fourth approach of quinoxaline N,N′-dioxides as anti-trypanosomatid agents against T. cruzi and Leishmania, we found extremely active derivatives. The present study allows us to state the correct requirements for obtaining optimal in vitro anti-T. cruzi activity. Derivatives possessing electron-withdrawing substituents in the 2-, 3-, 6-, and 7-positions were the most active compounds. With regard to these features and taking into account their mammal cytotoxicity, some trifluoromethylquinoxaline N,N′-dioxides have been proposed as candidates for further clinical studies. Consequently, mutagenicity and in vivo analyses were performed with the most promising derivatives. In addition, with regard to the mechanism of action studies, it was demonstrated that mitochondrial dehydrogenases are involved in the anti-T. cruzi activity of the most active derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.