The antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine, TPZ, 1) gains medicinal activity through its ability to selectively damage DNA in the hypoxic cells found inside solid tumors. This occurs via one-electron enzymatic reduction of TPZ to yield an oxygen-sensitive drug radical (2) that leads to oxidatively generated DNA damage under hypoxic conditions. Two possible mechanisms have been considered to account for oxidatively generated DNA damage by TPZ. First, homolysis of the N-OH bond in 2 may yield the well known DNA-damaging agent, hydroxyl radical. Alternatively, it has been suggested that elimination of water from 2 generates a benzotriazinyl radical (4) as the ultimate DNA-damaging species. In the studies described here, the TPZ analogue 3-methyl-1,2,4-benzotriazine 1,4-dioxide (5) was employed as a tool to probe the mechanism of DNA damage within this new class of antitumor drugs. Initially, it was demonstrated that 5 causes redoxactivated, hypoxia-selective oxidation of DNA and small organic substrates in a manner that is completely analogous to TPZ. This suggests that 5 and TPZ damage DNA by the same chemical mechanism. Importantly, the methyl substituent in 5 provides a means for assessing whether the putative benzotriazinyl intermediate 7 is generated following one-electron reduction. Two complementary isotopic labeling experiments provide evidence against the formation of the benzotriazinyl radical intermediate. Rather, a mechanism involving the release of hydroxyl radical from the activated drug radical intermediates can explain the DNA-cleaving properties of this class of antitumor drug candidates.The compound 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine, TPZ, 1, Scheme 1) is currently undergoing a variety of phase I, II, and III clinical trials for the treatment of human cancers. 1 TPZ gains medicinal activity from its ability to selectively damage DNA in the oxygen-poor (hypoxic) cells found inside solid tumors. [2][3][4][5][6][7][8] This DNA-damage process begins with intracellular enzymatic reduction of TPZ to yield the drug radical intermediate (2 , Scheme 1). [9][10][11][12] In normally-oxygenated cells, 2 undergoes relatively harmless oxidation back to the parent drug (Scheme 1), 9,10,13 while, under hypoxic conditions, the drug radical intermediate 2 leads to oxidatively generated DNA damage including hydroxylation of the nucleobases 22,23 and strand breaks initiated by the abstraction of hydrogen atoms from the sugar-phosphate backbone of DNA. [7][8][9][24][25][26][27][28] In the recent literature, two mechanisms have been considered to explain TPZ-mediated DNA damage. We have presented evidence [22][23][24]26,29 supporting a mechanism involving homolysis of the N-OH bond in the neutral drug radical (2) to yield the mono-N-oxide metabolite 3 and the well known DNA-damaging agent hydroxyl radical (Scheme 1, upper branch). 30 This *To whom correspondence should be addressed: gatesk@missouri.edu; phone: (573) FAX: (573) NIH-PA Author ManuscriptNIH-PA ...
As a continuation of our research in the quinoxaline 1,4-di-N-oxide new series of 2-arylcarbonyl-3-trifluoromethylquinoxaline, 1,4-di-N-oxide derivatives have been synthesized and evaluated in a full panel of 60 human tumor cell lines. Selective reductions were carried out on two compounds which allowed us to determine the compound structures by comparison of the 1H NMR spectra. In general, all the di-N-oxidized compounds showed good cytotoxic parameters. The best activity was observed in derivatives with electron-withdrawing groups in position 6 or 7 on the quinoxaline ring and in the unsubstituted analogues, whereas loss of one or two oxygens reduced the cytotoxicity. The best five compounds were selected for evaluation for the in vivo hollow fiber assays. In vitro studies reveal that compound 5h efficiently generates reactive oxygen species via redox cycling in the presence of the NADPH/cytochrome P450 enzyme system, providing a plausible molecular mechanism for the observed aerobic cytotoxicity of these quinoxaline N-oxides.
The compound 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine, TPZ) is a clinically promising anticancer agent that selectively kills the oxygen-poor (hypoxic) cells found in solid tumors. It has long been known that, under hypoxic conditions, TPZ causes DNA strand damage that is initiated by the abstraction of hydrogen atoms from the deoxyribose phosphate backbone of duplex DNA, but exact chemical mechanisms underlying this process remain unclear. Here we describe detailed characterization of sugar-derived products arising from TPZ-mediated strand damage. We find that the action of TPZ on duplex DNA under hypoxic conditions generates 5-methylene-2-furanone (6), oligonucleotide 3'-phosphoglycolates (7), malondialdehyde equivalents (8 or 9), and furfural (10). These results provide evidence that TPZ-mediated strand damage arises via hydrogen atom abstraction from both the most hindered (C1') and least hindered (C4' and C5') positions of the deoxyribose sugars in the double helix. The products observed are identical to those produced by hydroxyl radical. Additional experiments were conducted to better understand the chemical pathways by which TPZ generates the observed DNA-damage products. Consistent with previous work showing that TPZ can substitute for molecular oxygen in DNA damage reactions, it is found that, under anaerobic conditions, reaction of TPZ with a discrete, photogenerated C1'-radical in a DNA 2'-oligodeoxynucleotide cleanly generates the 2-deoxyribonolactone lesion (5) that serves as the precursor to 5-methylene-2-furanone (6). Overall, the results provide insight regarding the chemical structure of the DNA lesions that confront cellular repair, transcription, and replication machinery following exposure to TPZ and offer new information relevant to the chemical mechanisms underlying TPZ-mediated strand cleavage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.