MicroRNAs (miRNAs) are a class of short endogenous non-coding small RNAs that direct post-transcriptional gene silencing in eukaryotes. In plants, the expression of a large number of miRNAs has been shown to be regulated during pathogen infection. However, the functional role of the majority of these pathogen-regulated miRNAs has not been elucidated. In this work, we investigated the role of Arabidopsis miR858 in the defense response of Arabidopsis plants to infection by fungal pathogens with necrotrophic (Plectosphaerella cucumerina) or hemibiotrophic (Fusarium oxysporum and Colletotrichum higginsianum) lifestyles. Whereas overexpression of MIR858 enhances susceptibility to pathogen infection, interference with miR858 activity by target mimics (MIM858 plants) results in disease resistance. Upon pathogen challenge, stronger activation of the defense genes PDF1.2 and PR4 occurs in MIM858 plants than in wild-type plants, whereas pathogen infection induced weaker activation of these genes in MIR858 overexpressor plants. Reduced miR858 activity, and concomitant up-regulation of miR858 target genes, in MIM858 plants, also leads to accumulation of flavonoids in Arabidopsis leaves. The antifungal activity of phenylpropanoid compounds, including flavonoids, is presented. Furthermore, pathogen infection or treatment with fungal elicitors is accompanied by a gradual decrease in MIR858 expression in wild-type plants, suggesting that miR858 plays a role in PAMP (pathogen-associated molecular pattern)-triggered immunity. These data support that miR858 is a negative regulator of Arabidopsis immunity and provide new insights into the relevant role of miR858-mediated regulation of the phenylpropanoid biosynthetic pathway in controlling Arabidopsis immunity.
Rice is a staple food for more than half of the global population. Rice production is, however, severely affected by biotic and abiotic stresses. Fertilisers and pesticides are widely used in rice farming to maintain optimal yield and to prevent losses caused by environmental stress. However, the indiscriminate use of agrochemicals has adverse effects on the environment and human health. Stress caused by nutrient excess or deficiency has an impact on plant disease resistance. The interference of plant responses induced by nutrient stress can result in a positive or negative impact on resistance to pathogen infection. In this review, we explore the effects of combined stresses in rice, focusing on nutrient stress, such as nitrogen and phosphorous supply, and infection by fungal pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Crosstalk between nutrient stress-induced and pathogen-induced signalling pathways in rice is discussed, as well, with particular emphasis on regulatory microRNAs. Understanding the interconnected regulations between nutrient stress and disease resistance will lay a foundation for rationally optimising fertiliser and pesticide use in rice production.
In nature, plants are concurrently exposed to a number of abiotic and biotic stresses. Our understanding of convergence points between responses to combined biotic/abiotic stress pathways remains, however, rudimentary. Here we show that MIR399 overexpression, loss-of-function of PHOSPHATE2 (PHO2), or treatment with high phosphate (Pi) levels is accompanied by an increase in Pi content and accumulation of reactive oxygen species (ROS) in Arabidopsis thaliana. High Pi plants (e.g., miR399 overexpressors, pho2 mutants, and plants grown under high Pi supply) exhibited resistance to infection by necrotrophic and hemibiotrophic fungal pathogens. In the absence of pathogen infection, the expression levels of genes in the salicylic acid (SA)-and jasmonic acid (JA)-dependent signaling pathways were higher in high Pi plants compared to wild-type plants grown under control conditions, which is consistent with increased levels of SA and JA in non-infected high Pi plants. During infection, an opposite regulation in the two branches of the JA pathway (ERF1/PDF1.2 and MYC2/VSP2) occurs in high Pi plants. Thus, while pathogen infection induces PDF1.2 expression in miR399 OE and pho2 plants, VSP2 expression is downregulated by pathogen infection in these plants. This study supports the notion that Pi accumulation promotes resistance to infection by fungal pathogens in Arabidopsis, while providing a basis to better understand interactions between Pi signaling and hormonal signaling pathways for modulation of plant immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.