Introduction Since their emergence, SARS-CoV-2 variants of concern (VOC) B.1.1.7 and B.1.351 have spread worldwide. We estimated the risk of hospitalisation and admission to an intensive care unit (ICU) for infections with B.1.1.7 and B.1.351 in Norway, compared to infections with non-VOC. Materials and methods Using linked individual-level data from national registries, we conducted a cohort study on laboratory-confirmed cases of SARS-CoV-2 in Norway diagnosed between 28 December 2020 and 2 May 2021. Variants were identified based on whole genome sequencing, partial sequencing by Sanger sequencing or PCR screening for selected targets. The outcome was hospitalisation or ICU admission. We calculated adjusted risk ratios (aRR) with 95% confidence intervals (CIs) using multivariable binomial regression to examine the association between SARS-CoV-2 variants B.1.1.7 and B.1.351 with i) hospital admission and ii) ICU admission compared to non-VOC. Results We included 23,169 cases of B.1.1.7, 548 B.1.351 and 4,584 non-VOC. Overall, 1,017 cases were hospitalised (3.6%) and 206 admitted to ICU (0.7%). B.1.1.7 was associated with a 1.9-fold increased risk of hospitalisation (aRR 95%CI 1.6–2.3) and a 1.8-fold increased risk of ICU admission (aRR 95%CI 1.2–2.8) compared to non-VOC. Among hospitalised cases, no difference was found in the risk of ICU admission between B.1.1.7 and non-VOC. B.1.351 was associated with a 2.4-fold increased risk of hospitalisation (aRR 95%CI 1.7–3.3) and a 2.7-fold increased risk of ICU admission (aRR 95%CI 1.2–6.5) compared to non-VOC. Discussion Our findings add to the growing evidence of a higher risk of severe disease among persons infected with B.1.1.7 or B.1.351. This highlights the importance of prevention and control measures to reduce transmission of these VOC in society, particularly ongoing vaccination programmes, and preparedness plans for hospital surge capacity.
Objectives To estimate the risk of hospitalisation among reported cases of the Delta variant of SARS-CoV-2 compared to the Alpha variant in Norway. We also estimated the risk of hospitalisation by vaccination status. Methods We conducted a cohort study on laboratory-confirmed cases of SARS-CoV-2 in Norway, diagnosed between 3 May and 15 August 2021. We calculated adjusted risk ratios (aRR) with 95% confidence intervals (CIs) using multivariable log-binomial regression, accounting for variant, vaccination status, demographic characteristics, week of sampling and underlying comorbidities. Results We included 7,977 cases of Delta and 12,078 cases of Alpha. Overall, 347 (1.7%) cases were hospitalised. The aRR of hospitalisation for Delta compared to Alpha was 0.97 (95%CI 0.76–1.23). Partially vaccinated cases had a 72% reduced risk of hospitalisation (95%CI 59%–82%), and fully vaccinated cases had a 76% reduced risk (95%CI 61%–85%), compared to unvaccinated cases. Conclusions We found no difference in the risk of hospitalisation for Delta cases compared to Alpha cases in Norway. Our results support the notion that partially and fully vaccinated cases are highly protected against hospitalisation with COVID-19.
BackgroundCurrently Norway does not recommend universal varicella vaccination for healthy children. This study assessed susceptibility to varicella-zoster virus (VZV) in the Norwegian population for the first time.MethodsA national convenience sample of residual sera was tested for anti-VZV IgG by ELISA. We estimated age-specific seropositivity to VZV, controlling for sex and geographical distribution. We assessed differences between the proportions using the chi-square test and multivariable logistic regression. Seroprevalence data were compared to the varicella and herpes zoster-associated consultation rates in patients attending primary healthcare.ResultsAlthough 73.2 % (n = 1,540) of all samples were positive for VZV, only 11.2 % of samples collected from 1-year-olds were seropositive. There was a sharp increase in the proportion of seropositive in 3- and 5-year-olds (40.2 % and 65.4 %, respectively). By the school entry age of 6 years, 69.8 % of children were seropositive. The age-specific annual consultation rate for varicella in primary healthcare peaked in 1-year-olds, with 2,627 cases per 100,000 population. The profile of varicella-related consultations in primary healthcare mirrored the VZV seropositivity profile. The herpes zoster-related consultations in primary healthcare peaked in people over 70 years of age (702 cases per 100,000 population).ConclusionsVZV seroprevalence in Norway was somewhat lower than in some other European countries. The age-specific varicella–related consultation rates in primary healthcare mirrored the age profile of VZV seroprevalence.Electronic supplementary materialThe online version of this article (doi:10.1186/s12879-016-1581-4) contains supplementary material, which is available to authorized users.
BackgroundRotavirus vaccination was included into the Norwegian childhood immunisation programme in 2014. Before implementation, rotavirus vaccination was found to be cost–effective from a societal perspective, but not from a healthcare perspective. Since introduction, new data on the incidence and economic effects of rotavirus disease have become available. We assessed early epidemiological effects of the rotavirus vaccination programme and re–evaluated its cost–effectiveness in Norway for the years 2015–2019.MethodsUsing a dynamic transmission model, we compared the epidemiological effects of the ongoing two–dose vaccination programme with Rotarix®, and a hypothetical 3–dose programme with RotaTeq® with no vaccination. A baseline cost of € 54 per fully vaccinated child was used. Cost–effectiveness was computed from a healthcare and societal perspective, using a decision analytical model. Data on healthcare use and costs, productivity losses and health utilities were based on published and own estimates. Uncertainty was accounted for in one–way, multi–way, and probabilistic sensitivity analyses.ResultsDuring 2015–2019, 114,658 home care cases, 34,571 primary care cases, 7,381 severe cases, and 2 deaths associated with rotavirus disease were avoided due to vaccination. Under baseline assumptions vaccination was cost–effective from a healthcare perspective with a cost per QALY of € 47,447 for Rotarix® and € 52,709 for RotaTeq®. The break–even price was € 70 for Rotarix® and € 67 for RotaTeq®. Vaccination was cost–saving from the societal perspective, and also from a healthcare perspective for vaccine prices below € 25 and € 22 per vaccinated child for Rotarix® and RotaTeq®, respectively.ConclusionOngoing childhood rotavirus vaccination in Norway has reduced the rotavirus disease burden substantially, and is cost–effective compared with no vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.