DNA profiling through the analysis of STRs remains one of the most widely used tools in human identification across the world. Current laboratory STR analysis is slow, costly and requires expert users and interpretation which can lead to instances of delayed investigations or non-testing of evidence on budget grounds. The ParaDNA(®) Intelligence System has been designed to provide a simple, fast and robust way to profile DNA samples in a lab or field-deployable manner. The system analyses 5-STRs plus amelogenin to deliver a DNA profile that enables users to gain rapid investigative leads and intelligent prioritisation of samples in human identity testing applications. Utilising an innovative sample collector, minimal training is required to enable both DNA analysts and nonspecialist personnel to analyse biological samples directly, without prior processing, in approximately 75min. The test uses direct PCR with fluorescent HyBeacon(®) detection of STR allele lengths to provide a DNA profile. The developmental validation study described here followed the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines and tested the sensitivity, reproducibility, accuracy, inhibitor tolerance, and performance of the ParaDNA Intelligence System on a range of mock evidence items. The data collected demonstrate that the ParaDNA Intelligence System displays useful DNA profiles when sampling a variety of evidence items including blood, saliva, semen and touch DNA items indicating the potential to benefit a number of applications in fields such as forensic, military and disaster victim identification (DVI).
Current assessment of whether a forensic evidence item should be submitted for STR profiling is largely based on the personal experience of the Crime Scene Investigator (CSI) and the submissions policy of the law enforcement authority involved. While there are chemical tests that can infer the presence of DNA through the detection of biological stains, the process remains mostly subjective and leads to many samples being submitted that give no profile or not being submitted although DNA is present. The ParaDNA(®) Screening System was developed to address this issue. It consists of a sampling device, pre-loaded reaction plates and detection instrument. The test uses direct PCR with fluorescent HyBeacon™ detection of PCR amplicons to identify the presence and relative amount of DNA on an evidence item and also provides a gender identification result in approximately 75 minutes. This simple-to-use design allows objective data to be acquired by both DNA analyst and non-specialist personnel, to enable a more informed submission decision to be made. The developmental validation study described here tested the sensitivity, reproducibility, accuracy, inhibitor tolerance, and performance of the ParaDNA Screening System on a range of mock evidence items. The data collected demonstrates that the ParaDNA Screening System identifies the presence of DNA on a variety of evidence items including blood, saliva and touch DNA items.
The ParaDNA® Intelligence Test enables STR profiling directly from human biological samples and evidence items collected from crime scene in 75 min. Designed for non-expert use this system allows DNA information to be available to investigators before it would typically be available from a laboratory. The ParaDNA Intelligence Test system amplifies D3S1358, D8S119, D16S539, D18S1358and TH01 STR loci and the gender typing locus amelogenin and detects the alleles present with HyBeacon1 probes. Individual DNA samples from 381 UK Caucasian individuals were analysed using AmpFlSTR1 SGM Plus® and the ParaDNA Intelligence Test with the derived STR profiles compared. Here we describe the high level of concordance demonstrated between the two systems and discuss this with reference to allele frequencies and the discriminatory power offered by the ParaDNA Intelligence Test.
HyBeacons are linear oligonucleotides which incorporate fluorescent dyes covalently linked to internal nucleotides. They have previously been used with PCR and isothermal amplification to interrogate SNPs and STRs in fields as diverse as clinical diagnostics, food authentication, and forensic DNA profiling. This work explores their use for the identification of expressed gene sequences through mRNA profiling. The use of mRNA is becoming increasingly common in forensic casework to identify body fluids on evidence items, as it offers higher specificity and fewer false positives than current chemical presumptive testing methods. The work presented here details the development of a single-step one-tube RT-PCR assay to detect the presence of body fluids of forensic interest (saliva, blood, seminal fluid, vaginal fluid and menstrual blood) using HyBeacon probes and melt curve analysis. Each assay shows a high degree of specificity to the target body fluid mRNA suggesting there is no requirement to remove genomic DNA prior to analysis. Of the five assays developed, four were able to detect between 10 and 100 copies of target cDNA, the fifth 1000 copies of target. The results presented here demonstrate that such an approach can be optimised for non-expert users and further areas of work are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.