Parallel "arms races" involving the same or similar phenotypic interfaces allow inference about selective forces driving coevolution, as well as the importance of phylogenetic and phenotypic constraints in coevolution. Here, we report the existence of apparent parallel arms races between species pairs of garter snakes and their toxic newt prey that indicate independent evolutionary origins of a key phenotype in the interface. In at least one area of sympatry, the aquatic garter snake, Thamnophis couchii, has evolved elevated resistance to the neurotoxin tetrodotoxin (TTX), present in the newt Taricha torosa. Previous studies have shown that a distantly related garter snake, Thamnophis sirtalis, has coevolved with another newt species that possesses TTX, Taricha granulosa. Patterns of within population variation and phenotypic tradeoffs between TTX resistance and sprint speed suggest that the mechanism of resistance is similar in both species of snake, yet phylogenetic evidence indicates the independent origins of elevated resistance to TTX.
The behavioral and chemical ecology of marine organisms that possess tetrodotoxin (TTX) has not been comprehensively reviewed in one work to date. The evidence for TTX as an antipredator defense, as venom, as a sex pheromone, and as an attractant for TTX-sequestering organisms is discussed. Little is known about the adaptive value of TTX in microbial producers; thus, I focus on what is known about metazoans that are purported to accumulate TTX through diet or symbioses. Much of what has been proposed is inferred based on the anatomical distribution of TTX. Direct empirical tests of these hypotheses are absent in most cases.
The common garter snake (Thamnophis sirtalis) preys upon the rough-skinned newt (Taricha granulosa), which contains the neurotoxin tetrodotoxin (TTX) in the skin. TTX is toxic, large quantities are present in a newt, and highly resistant snakes have the ability to ingest multiple newts; subsequently snakes harbor significant amounts of active toxin in their own tissues after consuming a newt. Snakes harbor TTX in the liver for 1 mo or more after consuming just one newt, and at least 7 wk after consuming a diet of newts. Three weeks after eating one newt, snakes contained an average of 42 microg of TTX in the liver. This amount could severely incapacitate or kill avian predators, and mammalian predators may be negatively affected as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.