Exposure to ultraviolet B (UVB) radiation from the sun can result in sunburn, premature aging and carcinogenesis, but the mechanism responsible for acute inflammation of the skin is not well understood. Here we show that RNA is released from keratinocytes after UVB exposure and that this stimulates production of the inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) from nonirradiated keratinocytes and peripheral blood mononuclear cells (PBMCs). Whole-transcriptome sequencing revealed that UVB irradiation of keratinocytes induced alterations in the double-stranded domains of some noncoding RNAs. We found that this UVB-damaged RNA was sufficient to induce cytokine production from nonirradiated cells, as UVB irradiation of a purified noncoding RNA (U1 RNA) reproduced the same response as the one we observed to UVB-damaged keratinocytes. The responses to both UVB-damaged self-RNAs and UVB-damaged keratinocytes were dependent on Toll-like receptor 3 (TLR3) and Toll-like receptor adaptor molecule 1 (TRIF). In response to UVB exposure, Tlr3−/− mice did not upregulate TNF-α in the skin. Moreover, TLR3 was also necessary for UVB-radiation–induced immune suppression. These findings establish that UVB damage is detected by TLR3 and that self-RNA is a damage-associated molecular pattern that serves as an endogenous signal of solar injury.
Summary
Epithelial keratinocyte proliferation is an essential element of wound repair, and abnormal epithelial proliferation is an intrinsic element in the skin disorder psoriasis. The factors that trigger epithelial proliferation in these inflammatory processes are incompletely understood. Here we have shown that regenerating islet-derived protein 3-alpha (REG3A) is highly expressed in keratinocytes during psoriasis and wound repair and in imiquimod-induced psoriatic skin lesions. The expression of REG3A by kerati-nocytes is induced by interleukin-17 (IL-17) via activation of keratinocyte-encoded IL-17 receptor A (IL-17RA) and feeds back on keratinocytes to inhibit terminal differentiation and increase cell proliferation by binding to exostosin-like 3 (EXTL3) followed by activation of phosphatidylinositol 3 kinase (PI3K) and the kinase AKT. These findings reveal that REG3A, a secreted intestinal antimicrobial protein, can promote skin keratinocyte proliferation and can be induced by IL-17. This observation suggests that REG3A may mediate the epidermal hyperproliferation observed in normal wound repair and in psoriasis.
This study describes a sizeable hospitalisation and complication rate of varicella-zoster virus infections and provides a solid basis for future immunisation recommendations in Switzerland.
The production of antimicrobial peptides is essential for protection against a wide variety of microbial pathogens and plays an important role in the pathogenesis of several diseases. The mechanisms responsible for expression of antimicrobial peptides are incompletely understood, but a role for vitamin D as a transcriptional inducer of the antimicrobial peptide cathelicidin has been proposed. We show that 1,25-dihydroxyvitamin D3 (1,25-D3) acts together with parathyroid hormone (PTH), or the shared amino-terminal domain of PTH-related peptide (PTHrP), to synergistically increase cathelicidin and immune defense. Administration of PTH to mouse skin decreased susceptibility to skin infection by group A Streptococcus. Mice on dietary vitamin D3 restriction that responded with an elevation in PTH have an increased risk of infection if they lack 1,25-D3. These results identify PTH/PTHrP as a variable that serves to compensate for inadequate vitamin D during activation of antimicrobial peptide production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.