We have indented the surface of ice at temperatures between Ϫ1°C and Ϫ17°C with sharp atomic force microscope tips. For a thick viscous interfacial melt layer, a Newtonian treatment of the flow of quasiliquid between the tip and the ice suggests that indentations at different indentation velocities should have the same force/velocity ratio for a given pit depth. This is observed for silicon tips with and without a hydrophobic coating at temperatures between Ϫ1°C and Ϫ10°C implying the presence of a liquid-like layer at the interface between tip and ice. At temperatures below about Ϫ10°C the dependence of force on velocity is weaker, suggesting that plastic flow of the ice dominates. A simple model for viscous flow that incorporates the approximate shape of our tip is used to obtain an estimate of the layer thickness, assuming the layer has the viscosity of supercooled water. The largest layer thicknesses inferred from this model are too thin to be described by continuum mechanics, but the model fits the data well. This suggests that the viscosity of the confined quasiliquid is much greater than that of bulk supercooled water. The hydrophobically coated tip has a significantly thinner layer than the uncoated tip, but the dependence of thickness on temperature is similar. The estimated viscous layer thickness increases with increasing temperature as expected for a quasiliquid premelt layer.
We report on quantifiable depth-dependent contact resonance AFM (CR-AFM) measurements over polystyrene-polypropylene (PS-PP) blends to detail surface and sub-surface features in terms of elastic modulus and mechanical dissipation. The depth-dependences of the measured parameters were analyzed to generate cross-sectional images of tomographic reconstructions. Through a suitable normalization of the measured contact stiffness and indentation depth, the depth-dependence of the contact stiffness was analyzed by linear fits to obtain the elastic moduli of the materials probed. Besides elastic moduli, the contributions of adhesive forces (short-range versus long-range) to contact on each material were determined without a priori assumptions. The adhesion analysis was complemented by an unambiguous identification of distinct viscous responses during adhesion and in-contact deformation from the dissipated power during indentation.
We introduce nanoscale dynamic mechanical analysis (DMA) based on atomic force microscopy (AFM), a new mode for quantitative viscoelastic analysis of heterogeneous polymer materials at the nanoscale (AFM-nDMA). AFM-nDMA takes advantage of the exquisite force sensitivity, small contact radius, and nanoscale indentation depth of the AFM to provide dynamic mechanical analysis with 10 nm spatial resolution at rheologically relevant frequencies and variable temperature. This novel, non-resonant measurement is embedded in a force curve and typically occurs at a series of frequencies to provide spectra of storage modulus, loss modulus, and loss tangent. By using tailored probes and mitigating the effect of contact radius changes throughout the measurement, quantitative results are obtained that tie directly to bulk DMA and allow for time-temperature superposition analysis. The combination of quantitative results and 10 nm spatial resolution holds promise for the investigation of previously inaccessible microscopic domains, confinement effects, and interphases.
Atomic force microscopy (AFM) has been recognized since the mid-eighties as an excellent technique to image a wide range of samples in their near-natural environment. Although the primary function of AFM is to generate three-dimensional (3D) profiles of the scanned surface, much more information can be delivered via this technique. In 1993, TappingMode was developed, which prevents tip and sample damage due to friction and shear forces and allows qualitative mechanical property mapping through phase imaging. About the same time, force spectroscopy and force volume (FV) were developed to study tip-sample forces at a point or over an area, respectively. To date, force spectroscopy and FV are the most commonly used AFM modes for measuring nanometer-scale mechanical forces in a quantitative manner. Unfortunately, force spectroscopy and FV suffer from slow acquisition speed and a lack of automated tools; these operating characteristics limit their use because of the hundreds or thousands of curves that are required for good statistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.