The priority pollutant lists of both the U.S. Environmental Protection Agency (U.S. EPA) and the European Union (EU) include diphenylamine (DPA), a contaminant found in wastewater of various industries. This work demonstrates the potential of using enzymatic treatment to remove DPA from buffered synthetic wastewater. This treatment method includes oxidative polymerization of DPA using laccase from Trametes villosa, followed by removal of those polymers via adsorptive micellar flocculation (AMF) using sodium lauryl sulfate (SDS) and alum. Researchers investigated the effects of pH, laccase concentration, molecular mass, and concentration of polyethylene glycol (PEG) in continuously stirred batch reactors to achieve 95% substrate conversion in three hours. Treatment of 0.19 mM DPA was best at pH 7 and an enzyme concentration from 0.0025 to 0.0075 standard activity unit/mL. Except for PEG 400, optimum enzyme and PEG concentrations decreased with an increase in PEG molecular mass. Optimum AMF conditions were pH 3.0 to 6.5, 200 mg/L of SDS, and 150 mg/L of alum.
This study investigated the feasibility of a two-step process for the removal of benzene from buffered synthetic wastewater. Benzene is outside the scope of enzymatic removal. In order to remove it from wastewater using enzyme, its pretreatment by modified Fenton reaction was employed to generate the corresponding phenolic compounds. In the first phase, the optimum pH, H2O2 and Fe2+ concentrations and reaction time for the Fenton reaction were determined to maximize the conversion of benzene to phenolic compounds without causing significant mineralization. The pretreatment process was followed by oxidative polymerization of the phenolic compounds catalyzed by a laccase from Trametes villosa. Factors of interest for the three-hour enzymatic treatment were pH and laccase concentration. Under optimum Fenton reaction conditions, 80% conversion of the initial benzene concentration was achieved, giving a mixture containing oxidative dimerization product (biphenyl) and hydroxylation products (phenol, catechol, resorcinol, benzoquinone and hydroquinone). Enzymatic removal of biphenyl and benzoquinone was not possible but 2.5 U/mL laccase was successful in removal of the rest of the phenolic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.