Purpose The purpose of this study is to develop and validate a 3D deep learning model that predicts the final clinical diagnosis of Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), mild cognitive impairment due to Alzheimer’s disease (MCI-AD), and cognitively normal (CN) using fluorine 18 fluorodeoxyglucose PET (18F-FDG PET) and compare model’s performance to that of multiple expert nuclear medicine physicians’ readers. Materials and methods Retrospective 18F-FDG PET scans for AD, MCI-AD, and CN were collected from Alzheimer’s disease neuroimaging initiative (556 patients from 2005 to 2020), and CN and DLB cases were from European DLB Consortium (201 patients from 2005 to 2018). The introduced 3D convolutional neural network was trained using 90% of the data and externally tested using 10% as well as comparison to human readers on the same independent test set. The model’s performance was analyzed with sensitivity, specificity, precision, F1 score, receiver operating characteristic (ROC). The regional metabolic changes driving classification were visualized using uniform manifold approximation and projection (UMAP) and network attention. Results The proposed model achieved area under the ROC curve of 96.2% (95% confidence interval: 90.6–100) on predicting the final diagnosis of DLB in the independent test set, 96.4% (92.7–100) in AD, 71.4% (51.6–91.2) in MCI-AD, and 94.7% (90–99.5) in CN, which in ROC space outperformed human readers performance. The network attention depicted the posterior cingulate cortex is important for each neurodegenerative disease, and the UMAP visualization of the extracted features by the proposed model demonstrates the reality of development of the given disorders. Conclusion Using only 18F-FDG PET of the brain, a 3D deep learning model could predict the final diagnosis of the most common neurodegenerative disorders which achieved a competitive performance compared to the human readers as well as their consensus.
We present a case of a 60-year-old man with a history of severe hypoproteinemia and constitutional syndrome, suspected to have protein-losing enteropathy (PLE). Bone scintigraphy ((99m)Tc-MDP) performed to rule out the presence of bone metastases incidentally showed abnormal uptake in abdominal soft tissue. The patient unexpectedly died of heart failure, and autopsy revealed microscopic alterations consistent with PLE exclusively in the right colon, corresponding to the area of abnormal uptake. Few similar cases have been published, but none of them reported correlative pathological findings affecting the area of abnormal tracer uptake. In this case of PLE, (99m)Tc-MDP scintigraphy was a useful imaging method for localizing the site of protein loss, showing a focal area of alteration in the right colon. This finding could also have been of great help in case that surgery had been finally performed to control the protein loss.
Background In recent years, neuroimaging with deep learning (DL) algorithms have made remarkable advances in the diagnosis of neurodegenerative disorders. However, applying DL in different medical domains is usually challenged by lack of labeled data. To address this challenge, transfer learning (TL) has been applied to use state-of-the-art convolution neural networks pre-trained on natural images. Yet, there are differences in characteristics between medical and natural images, also image classification and targeted medical diagnosis tasks. The purpose of this study is to investigate the performance of specialized and TL in the classification of neurodegenerative disorders using 3D volumes of 18F-FDG-PET brain scans. Results Results show that TL models are suboptimal for classification of neurodegenerative disorders, especially when the objective is to separate more than two disorders. Additionally, specialized CNN model provides better interpretations of predicted diagnosis. Conclusions TL can indeed lead to superior performance on binary classification in timely and data efficient manner, yet for detecting more than a single disorder, TL models do not perform well. Additionally, custom 3D model performs comparably to TL models for binary classification, and interestingly perform better for diagnosis of multiple disorders. The results confirm the superiority of the custom 3D-CNN in providing better explainable model compared to TL adopted ones.
Thoracic pain is an entity that can be difficult to diagnose etiologically. Once the cardiac origin has been ruled out, the rheumatologic, neoplastic, and infectious causes have to be taken into account. We present the case of a patient with atypical chest pain after triple-bypass surgery in whom F-FDG PET/CT scan showed an important uptake of the radiopharmaceutical in costal cartilages, in relation to pan-costochondritis due to Aspergillus.
The purpose of this project is to develop and validate a Deep Learning (DL) FDG PET imaging algorithm able to identify patients with any neurodegenerative diseases (Alzheimer's Disease (AD), Frontotemporal Degeneration (FTD) or Dementia with Lewy Bodies (DLB)) among patients with Mild Cognitive Impairment (MCI). A 3D Convolutional neural network was trained using images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The ADNI dataset used for the model training and testing consisted of 822 subjects (472 AD and 350 MCI). The validation was performed on an independent dataset from La Fe University and Polytechnic Hospital. This dataset contained 90 subjects with MCI, 71 of them developed a neurodegenerative disease (64 AD, 4 FTD and 3 DLB) while 19 did not associate any neurodegenerative disease. The model had 79% accuracy, 88% sensitivity and 71% specificity in the identification of patients with neurodegenerative diseases tested on the 10% ADNI dataset, achieving an area under the receiver operating characteristic curve (AUC) of 0.90. On the external validation, the model preserved 80% balanced accuracy, 75% sensitivity, 84% specificity and 0.86 AUC. This binary classifier model based on FDG PET images allows the early prediction of neurodegenerative diseases in MCI patients in standard clinical settings with an overall 80% classification balanced accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.