Water floods are typically conducted using the least expensive, easily available, non-damaging brine. Very little attention is given to the possibility of changing brine composition to improve oil recovery. Over the last 20 years, there has been laboratory and field trial evidence that shows changing brine chemistry, especially to low salinity, can sometimes increase the recovery. The various mechanisms of additional oil recovery from changing brine chemistry are not entirely clear. We report here on the effect of using low salinity and divalent altered brines on oil recovery through a variety of laboratory methods and materials. More than twenty corefloods were conducted to evaluate the effect of brine chemistry and initial wettability on incremental oil recovery. We also performed phase behavior tests, contact angle measurements, and wettability index measurements to evaluate recovery mechanisms. Initial wettability of the core was altered by ageing it with different crude oil containing wide range of asphaltene content. The core flood with lowest wettability index (least water-wet) produced about 12% incremental recovery while the most water-wet core only produced ∼ 4% during the secondary low salinity waterflood.
It has been shownthat injecting surfactants into unconventional hydraulically fractured wells can improve oil recovery. It is hypothesized that oil recovery can be further improved by more efficiently distributing surfactants into the reservoir using foam. The challenge is that in high temperature applications (e.g., 240 F) many of these formulations may not make stable foams as they have only moderate foaming properties (short half-life). Therefore, we are evaluating polymers that can be used to improve foam stability in high temperature wells which has the potential to improve oil recovery beyond surfactant only injection.Surfactant stabilized nitrogen foams were evaluated using a foam rheometer at pressures and temperatures representative of a field pilot well. The evaluation process consisted of measuring baseline properties (foam viscosity and stability) of a surfactant stabilized foam without any added stabilizer. Next, conventional enhanced oil recovery polymers (HPAMs, modified-HPAMs, and nonionic polymers) were added at different concentrations to determine their impacts on foam stability. Our results demonstrate that inclusion of a relatively low concentration (0.05 wt% – 0.2 wt%) of polymer has a pronounced impact on foam stability. It was determined that reservoir temperature plays a key role in selecting astabilizing polymer. For example, at higher temperatures (>240 F), sulfonated HPAM polymers at just 0.2 wt% more than doubled the stability of the foam. The polymer that was selected from this lab work was tested in a foam field trial in an unconventional well. It is thought that improved foam stability could potentially help improve the distribution of surfactants in fracture network and further improve oil recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.