An important unresolved issue in microbial secondary metabolite production is the abundance of biosynthetic gene clusters that are not expressed under typical laboratory growth conditions. These so-called silent or cryptic gene clusters are sources of new natural products, but how they are silenced, and how they may be rationally activated are areas of ongoing investigation. We recently devised a chemogenetic high-throughput screening approach (“HiTES”) to discover small molecule elicitors of silent biosynthetic gene clusters. This method was successfully applied to a Gram-negative bacterium; it has yet to be implemented in the prolific antibiotic-producing streptomycetes. Herein we have developed a high-throughput transcriptional assay format in Streptomyces spp. by leveraging eGFP, inserted both at a neutral site and inside the biosynthetic cluster of interest, as a read-out for secondary metabolite synthesis. Using this approach, we successfully used HiTES to activate a silent gene cluster in Streptomyces albus J1074. Our results revealed the cytotoxins etoposide and ivermectin as potent inducers, allowing us to isolate and structurally characterize 14 novel small molecule products of the chosen cluster. One of these molecules is a novel antifungal, while several others inhibit a cysteine protease implicated in cancer. Studies addressing the mechanism of induction by the two elicitors led to the identification of a pathway-specific transcriptional repressor that silences the gene cluster under standard growth conditions. The successful application of HiTES will allow future interrogations of the biological regulation and chemical output of the countless silent gene clusters in Streptomyces spp.
cMicroarray analyses revealed that the expression of genes for secondary metabolism together with that of primary metabolic genes was induced by chitin in autoclaved soil cultures of Streptomyces coelicolor A3(2). The data also indicated that DasR was involved in the regulation of gene expression for chitin catabolism, secondary metabolism, and stress responses.
Although Streptomyces species are major chitin-degraders in soil ecosystems, the expression of the diverse chitinase genes within Streptomyces coelicolor grown in soil has not been assessed. As a first step, the induction pattern of nine chitinase genes in S. coelicolor growing in autoclaved soil was compared with those in liquid cultures. The relative expression levels of nine chitinase genes were measured using real-time reverse transcription PCR. The expression of all chitinase genes was induced by chitin in both autoclaved soil and liquid cultures, but to different levels. The expression levels of five chitinase genes in autoclaved soil were significantly higher than those in the liquid cultures. In particular, a putative chitinase gene, chitinase H, showed the highest induction in autoclaved soil. The same induction pattern was confirmed in nonautoclaved soil, indicating that soil contains some factors affecting the expression of chitinase genes. The chiH gene product, ChiH, cloned in Streptomycetes lividans was secreted and exhibited chitin degradation activity that was stable within a wide range of acidic pHs. The disruption of dasR, a transcriptional regulator for the uptake of N-acetylglucosamine, abolished the expression of chiH, demonstrating that DasR is required for the regulation of ChiH expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.