In the last decade, as semiconductor industry was approaching the end of the exponential Moore's roadmap for device downscaling, the necessity of finding new candidate materials has forced many research groups to explore many different types of non-conventional materials. Among them, graphene, CNTs and organic conductors are the most successful alternatives. Finding a material with metallic properties combined with field effect characteristics on nanoscale level has been always a dream to continue the ever-shrinking road of the nanoelectronics. Due to its fantastic features such as high mobility, optical transparency, room temperature quantum Hall effect, mechanical stiffness, etc. the atomically thin carbon layer, graphene, has attracted the industry's attention not only in the micro-, nano-, and opto-electronics but also in biotechnology. This paper reviews the basics and previous works on graphene technology and its developments. Compatibility of this material with Si processing technology is its crucial characteristic for mass production. This study also reviews the physical and electrical properties of graphene as a building block for other carbon allotropes. Different growth methods and a wide range of graphene's applications will be discussed and compared. A brief comparison on the performance result of different types of devices has also been presented. Until now, the main focus of research has been on the background physics and its application in electronic devices. But, according to the recent works on its applications in photonics and optoelectronics, where it benefits from the combination of its unique optical and electronic properties, even without a bandgap, this material enables ultrawide-band tunability.Here in this article we review different applications and graphene's advantages and drawbacks will be mentioned to conclude at the end.
In semiconductor manufacturing, black silicon (bSi) has traditionally been considered as a sign of unsuccessful etching. However, after more careful consideration, many of its properties have turned out to be so superior that its integration into devices has become increasingly attractive. In devices where bSi covers the whole wafer surface, such as solar cells, the integration is already rather mature and different bSi fabrication technologies have been studied extensively. Regarding the integration into devices where bSi should cover only small selected areas, existing research focuses on device properties with one specific bSi fabrication method. Here, we fabricate bSi patterns with varying dimensions ranging from millimeters to micrometers using three common bSi fabrication techniques, i.e., plasma etching, metal-assisted chemical etching (MACE) and femtosecond-laser etching, and study the corresponding fabrication characteristics and resulting material properties. Our results show that plasma etching is the most suitable method in the case of µm-scale devices, while MACE reached surprisingly almost the same performance. Femtosecondlaser has potential due to its maskless nature and capability for hyperdoping, however, in this study its moderate accuracy, large silicon consumption and spreading of the etching damage outside the bSi region left room for improvement.
The femtosecond‐pulsed laser processed black silicon (fs‐bSi) features high absorptance in a wide spectral range but suffers from high amount of laser induced damage as compared with bSi fabricated by other methods. Here, the aim is to minimize the charge carrier recombination in the fs‐bSi caused by laser damage as indicated by the sub‐bandgap absorption and as quantified by the carrier lifetime, while maintaining high absorption in the above bandgap. The effect of the laser parameters, including the focal position, the average power, and the scan speed are systematically studied by characterizing the surface morphology, the absorptance spectra, and the minority‐carrier recombination lifetime. For the surface passivation of fs‐bSi, the well‐established atomic layer deposited (ALD) Al2O3 is used. The results show that with the tailored laser parameters, high average absorptance of about 96% in the visible range and minority carrier lifetime of 54 μs at the injection level of Δn = 1 · 1015 cm−3 can be obtained simultaneously. This work paves the way toward high‐performance broadband optoelectronic devices based on surface passivated fs‐bSi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.