Most notable emerging water desalination technologies and related publications, as examined by the authors, investigate opportunities to increase energy efficiency of the process. In this paper, the authors reason that improving energy efficiency is only one route to produce more cost-effective potable water with fewer emissions. In fact, the grade of energy that is used to desalinate water plays an equally important role in its economic viability and overall emission reduction. This paper provides a critical review of desalination strategies with emphasis on means of using low-grade energy rather than solely focusing on reaching the thermodynamic energy limit. Herein, it is argued that large-scale commercial desalination technologies have by-and-large reached their engineering potential. They are now mostly limited by the fundamental process design rather than process optimization, which has very limited room for improvement without foundational change to the process itself. The conventional approach toward more energy efficient water desalination is to shift from thermal technologies to reverse osmosis (RO). However, RO suffers from three fundamental issues: (1) it is very sensitive to high-salinity water, (2) it is not suitable for zero liquid discharge and is therefore environmentally challenging, and (3) it is not compatible with low-grade energy. From extensive research and review of existing commercial and lab-scale technologies, the authors propose that a fundamental shift is needed to make water desalination more affordable and economical. Future directions may include novel ideas such as taking advantage of energy localization, surficial/interfacial evaporation, and capillary action. Here, some emerging technologies are discussed along with the viability of incorporating low-grade energy and its economic consequences. Finally, a new process is discussed and characterized for water desalination driven by capillary action. The latter has great significance for using low-grade energy and its substantial potential to generate salinity/blue energy.
High-resolution terrain models of open-pit mine highwalls and benches are essential in developing new automated slope monitoring systems for operational optimization. This paper presents several contributions to the field of remote sensing in surface mines providing a practical framework for generating high-resolution images using low-trim Unmanned Aerial Vehicles (UAVs). First, a novel mobile application was developed for autonomous drone flights to follow mine terrain and capture high-resolution images of the mine surface. In this article, case study is presented showcasing the ability of developed software to import area terrain, plan the flight accordingly, and finally execute the area mapping mission autonomously. Next, to model the drone’s battery performance, empirical studies were conducted considering various flight scenarios. A multivariate linear regression model for drone power consumption was derived from experimental data. The model has also been validated using data from a test flight. Finally, a genetic algorithm for solving the problem of flight planning and optimization has been employed. The developed power consumption model was used as the fitness function in the genetic algorithm. The designed algorithm was then validated using simulation studies. It is shown that the offered path optimization can reduce the time and energy of high-resolution imagery missions by over 50%. The current work provides a practical framework for stability monitoring of open-pit highwalls while achieving required energy optimization and imagery performance.
Respirable coal mine dust (RCMD) exposure is associated with black lung and silicosis diseases in underground miners. Although only RCMD mass and silica concentrations are regulated, it is possible that particle size, surface area, and other chemical constituents also contribute to its adverse health effects. This review summarizes measurement technologies for RCMD mass concentrations, morphology, size distributions, and chemical compositions, with examples from published efforts where these methods have been applied. Some state-of-the-art technologies presented in this paper have not been certified as intrinsically safe, and caution should be exerted for their use in explosive environments. RCMD mass concentrations are most often obtained by filter sampling followed by gravimetric analysis, but recent requirements for real-time monitoring by continuous personal dust monitors (CPDM) enable quicker exposure risk assessments. Emerging low-cost photometers provide an opportunity for a wider deployment of real-time exposure assessment. Particle size distributions can be determined by microscopy, cascade impactors, aerodynamic spectrometers, optical particle counters, and electrical mobility analyzers, each with unique advantages and limitations. Different filter media are required to collect integrated samples over working shifts for comprehensive chemical analysis. Teflon membrane filters are used for mass by gravimetry, elements by energy dispersive X-ray, rare-earth elements by inductively coupled plasma-mass spectrometry and mineralogy by X-ray diffraction. Quartz fiber filters are analyzed for organic, elemental, and brown carbon by thermal/optical methods and non-polar organics by thermal desorption-gas chromatography-mass spectrometry. Polycarbonate-membrane filters are analyzed for morphology and elements by scanning electron microscopy (SEM) with energy dispersive X-ray, and quartz content by Fourier-transform infrared spectroscopy and Raman spectroscopy.
SUMMARYIn this paper, energy dissipation and residual stress developments are numerically studied in threedimensional closed deformation paths. Different objective stress rates coded in a finite element program are compared.In order to update the stresses, implicit integration algorithm based on mid-point rule for corotational and non-corotational objective rates is used. Several corotational objective rates such as Jaumann, Green-Naghdi, Eulerian and Lagrangian triad-based rates and non-corotational rates such as Truesdell and Cotter-Rivlin rates are considered.It is shown in this work that in some cases also a non-integrable model may exhibit no dissipation energy at the end of a closed deformation path.This study underlines some results previously obtained by other researchers, i.e. among all considered stress rates the logarithmic rate manifests the best result in respect of elasticity requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.