Estimating groundwater recharge is a key component in determining the sustainable yield of groundwater resources in arid and semi-arid areas such as southern California. Estimating groundwater recharge on a regional scale requires developing a water budget that incorporates data on boundary conditions, aquifer properties, groundwater levels, and groundwater production. The hydrological budget method proposed herein is simple, cost-effective, and easy to apply. It utilizes matched pairs of groundwater level measurements, groundwater extraction data, and distributed specific yield information for estimating groundwater recharge. In this method, ARCGIS 9.0 Geostatistical and Spatial Analyst applications are used for interpolating/extrapolating and creating grids for specific yield, bedrock elevation, and raw groundwater data. The annual average groundwater recharge for the Hemet subbasin in western Riverside County, California, from 1997 to 2005 is estimated at 12.5 MCM, with wet and dry periods ranging between 14.9 MCM and 11.7 MCM, respectively. The proposed method utilizes information commonly available F. Manghi Water Resources, Western Municipal Water District,
A two-layered confined-unconfined numerical model for flow and mass transport is developed for the San Jacinto Basin. The model structure is determined by the geological structure of the Basin and model parameters are calibrated using 20 years of historical records. The total number of historical head observations used for the flow model calibration is 1,117 and the total number of the estimated parameters is 91. The two-layered transport model is also calibrated using historical water quality records. Sensitivity analysis of the flow model shows that only 68 parameters (out of a total of 91) are relatively sensitive and reliable. However, the unreliable parameters (23 of them) are found to be insensitive and thus not significant to the prediction and management of conjunctive use of surface water and ground water. The developed flow model has been used to study the two proposed artificial recharge scenarios for the San Jacinto Basin. We have found that during a relatively dry condition, an artificial recharge rate of 80 acre-ft/day can be achieved during the recharge period October through January.However, for a relatively wet condition, only 80 percent of the proposed rate can be effectively stored in the Basin during these months.(KEY TERMS: artificial recharge; conjunctive use; mathematical models; model calibration; sensitivity analysis.) at the lowest possible long-term cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.