This paper provides a program to adopt based on modeling the nonlinear behavior of arbitrary elements with combination of material nonlinearity and geometric nonlinearity for the purpose of structures assessment. In this study, total Lagrangian formulation is developed based on separate fibers with uniaxial behavior and interface elements with shear response of local stress field models, simultaneously. The accuracy of the suggested approach is verified through comparison of experimental results and existing analytical methods.
Purpose
This paper aims to develop a new multi-fiber element for predicting the structural behavior of planar-reinforced concrete (RC) members.
Design/methodology/approach
In this work, an exact multi-directional stiffness matrix is analytically derived based on the post-cracking bond-slip interaction between concrete and steel bars. The approach is also extended for large displacement analysis using Green–Lagrange finite strain tensor. In the proposed formulation, the weak form of governed differential equations is approximated by a trial-function expansion based on a finite strain-description and an additional degree of freedom for steel bars.
Findings
The findings provide a realistic description of cracking in the concrete structure. Numerical studies are conducted to examine the accuracy of the suggested approach and its capability to predict fairly complex responses of RC models. The findings prove that the proposed element can evaluate local and global responses of RC members, and it can be used as a reliable tool to reflect bond-slip effects in large displacement level. This leads to a robust and precise model for non-linear analysis of RC structures.
Originality/value
The methodology is capable of simulating coupled inelastic shear-flexural behavior of RC members through local stress field theory and Timoshenko beam model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.