Potential applications of this research include procedures for decreasing the temporal decline in observer performance and the high mental workload imposed by vigilance tasks.
BackgroundIn order to take medications safely and effectively, individuals need to be able to see, read, and understand the medication labels. However, one-half of medication labels are currently misunderstood, often because of low literacy, low vision, and cognitive impairment. We sought to design a mobile tool termed ClereMed that could rapidly screen for adults who have difficulty reading or understanding their medication labels.ObjectiveThe aim of this study was to build the ClereMed prototype; to determine the usability of the prototype with adults 55 and over; to assess its accuracy for identifying adults with low-functional reading ability, poor ability on a real-life pill-sorting task, and low cognition; and to assess the acceptability of a touchscreen device with older adults with age-related changes to vision and cognition.MethodsThis pilot study enrolled adults (≥55 years) who were recruited through pharmacies, retirement residences, and a low-vision optometry clinic. ClereMed is a hypertext markup language (HTML)-5 prototype app that simulates medication taking using an iPad, and also provides information on how to improve the accessibility of prescription labels. A paper-based questionnaire included questions on participant demographics, computer literacy, and the Systems Usability Scale (SUS). Cognition was assessed using the Montreal Cognitive Assessment tool, and functional reading ability was measured using the MNRead Acuity Chart. Simulation results were compared with a real-life, medication-taking exercise using prescription vials, tablets, and pillboxes.ResultsThe 47 participants had a mean age of 76 (SD 11) years and 60% (28/47) were female. Of the participants, 32% (15/47) did not own a computer or touchscreen device. The mean SUS score was 76/100. ClereMed correctly identified 72% (5/7) of participants with functional reading difficulty, and 63% (5/8) who failed a real-life pill-sorting task, but only 21% (6/28) of participants with cognitive impairment. Participants who owned a computer or touchscreen completed ClereMed in a mean time of 26 (SD 16) seconds, compared with 52 (SD 34) seconds for those who do not own a device (P<.001). Those who had difficulty, struggled with screen glare, button activation, and the “drag and drop” function.ConclusionsClereMed was well accepted by older participants, but it was only moderately accurate for reading ability and not for mild cognitive impairment. Future versions may be most useful as part of a larger medication assessment or as a tool to help family members and caregivers identify individuals with impaired functional reading ability. Future research is needed to improve the sensitivity for measuring cognitive impairment and on the feasibility of implementing a mobile app into pharmacy workflow.
Supervisory control of uninhabited aerial vehicles requires vigilance, also termed sustained attention. This pilot study investigated the efficacy of short duration vibrotactile signals presented on the waist at intermittent periods as a countermeasure for sustaining performance in auditory and visual vigilance tasks that were equated in discrimination difficulty. Performance with the vibrotactile stimulation countermeasure was compared against performance with a rest break countermeasure. Participants were randomly assigned to one of eight groups. The groups were defined by combinations of sensory modality (auditory or visual), and type of countermeasure (control, rest break, low vibrotactile signals, or high vibrotactile signals). For each sensory modality, participants performed a monitoring task that was comprised four 10-minute vigils. The administration of the rest break and vibrotactile countermeasures occurred following the third vigil for each sensory modality. The results of the pilot study showed greater performance improvement in the auditory modality than the visual modality. In the auditory modality, the two vibrotactile countermeasures appear to have some benefit for sustaining performance but not as much as the rest break, whereas, in the visual modality, the three countermeasures had no benefit for sustaining performance. These preliminary findings encourage further investigation of the efficacy of vibrotactile stimulation as a countermeasure for sustaining performance in a vigilance task for both auditory and visual modalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.