There has been a great deal of human factors research on unmanned air and ground vehicles, but there is very little research examining the unique human factors problems associated with unmanned underwater vehicles (UUVs). The lack of research is surprising considering the increased use and the envisioned future use of UUVs in military maritime operations. In this paper, it is argued that because the underwater environment is so harsh and challenging, operating UUVs presents human factors problems that are different from the challenges of surface unmanned systems. Several common human factors problems are discussed when using unmanned systems, including the loss of sensory cues and spatial awareness, the control of the remote vehicle, problems with situation awareness and workload, and problems with trust in automation. In each case, these issues are discussed with respect to underwater operations.
Potential applications of this research include improving the attention-getting capability of an alerting system, which could lead to increased warning compliance, potentially resulting in fewer incidents and accidents.
When designed correctly, non-verbal auditory alarms can convey different levels of urgency to the aircrew, and thereby permit the operator to establish the appropriate level of priority to address the alarmed condition. The conveyed level of urgency of five non-verbal auditory alarms presently used in the Canadian Forces CH-146 Griffon helicopter was investigated. Pilots of the CH-146 Griffon helicopter and non-pilots rated the perceived urgency of the signals using a rating scale. The pilots also ranked the urgency of the alarms in a post-experiment questionnaire to reflect their assessment of the actual situation that triggers the alarms. The results of this investigation revealed that participants' ratings of perceived urgency appear to be based on the acoustic properties of the alarms which are known to affect the listener's perceived level of urgency. Although for 28% of the pilots the mapping of perceived urgency to the urgency of their perception of the triggering situation was statistically significant for three of the five alarms, the overall data suggest that the triggering situations are not adequately conveyed by the acoustic parameters inherent in the alarms. The pilots' judgement of the triggering situation was intended as a means of evaluating the reliability of the alerting system. These data will subsequently be discussed with respect to proposed enhancements in alerting systems as it relates to addressing the problem of phase of flight. These results call for more serious consideration of incorporating situational awareness in the design and assignment of auditory alarms in aircraft.
Potential applications of this research include procedures for decreasing the temporal decline in observer performance and the high mental workload imposed by vigilance tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.