Ga[Formula: see text]In[Formula: see text]As/Ga[Formula: see text]In[Formula: see text]Sb vertical heterojunctionless tunneling field effect transistor (VHJL-TFET) has been suggested to optimize the digital benchmarking parameters. In the proposed VHJL-TFET with type II heterostructure (i.e., [Formula: see text] and [Formula: see text]), slight changes in gate voltage cause switching from OFF-state to ON-state. As a result, the electrical properties of Ga[Formula: see text]In[Formula: see text]As/Ga[Formula: see text]In[Formula: see text]Sb VHJL-TFET are excellent in the sub-threshold region. The heterostructure with III–V semiconductors in the source-channel region increases the ON-state current ([Formula: see text]) of the VHJL-TFET. Comparing the results of Ga[Formula: see text]In[Formula: see text]As/Ga[Formula: see text]In[Formula: see text]Sb VHJL-TFET with the simulated devices with type I heterostructure (i.e., [Formula: see text] and [Formula: see text]) and type III heterostructure (i.e., [Formula: see text] and [Formula: see text]) shows the improvement by 26% and 15% in the average subthreshold slope (SS). Sensitivity analysis for VHJL-TFET with the type II heterostructure shows that the sensitivity of OFF-state current ([Formula: see text] to the body thickness ([Formula: see text] and doping concentration ([Formula: see text] is more than the sensitivity of the other main electrical parameters. The Ga[Formula: see text]In[Formula: see text]As/Ga[Formula: see text]In[Formula: see text]Sb VHJL-TFET with a channel length of 20 nm, [Formula: see text] nm, and [Formula: see text] cm[Formula: see text] showed the [Formula: see text] mV/dec, [Formula: see text]/[Formula: see text], and [Formula: see text] mA/um. As a result, Ga[Formula: see text]In[Formula: see text]As/Ga[Formula: see text]In[Formula: see text]Sb VHJL-TFET can be a reasonable choice for digital applications.
GaXIn1-XAs/GaYIn1-YSb vertical heterojunctionless tunneling field effect transistor (VHJL-TFET) has been suggested to optimize the digital benchmarking parameters. In the proposed VHJL-TFET with type II heterostructure (i.e. X=0.8, Y=0.85), slight changes in gate voltage cause switching from OFF-state to ON-state. As a result, the electrical properties of Ga0.8In0.2As/Ga0.85In0.15Sb VHJL-TFET are excellent in the sub-threshold region. The heterostructure with III-V semiconductors in the source-channel region increases the ON-state current (ION (of the VHJL-TFET. Comparing the results of Ga0.8In0.2As/Ga0.85In0.15Sb VHJL-TFET with the simulated devices with type I heterostructure (i.e. X=0.9, Y=0.1) and type III heterostructure (i.e. X=0.1, Y=0.4) shows the improvement by 26% and 15% in the average subthreshold slope (SS). Sensitivity analysis for VHJL-TFET with the type II heterostructure shows that the sensitivity of OFF-state current (IOFF) to the body thickness (Tb) and doping concentration (ND) is more than the sensitivity of the other main electrical parameters. The Ga0.8In0.2As/Ga0.85In0.15Sb VHJL-TFET with a channel length of 20 nm, Tb=5 nm, and ND=1×1018cm-3 showed the SS=4.4mV/dec, ION/IOFF=4E14, and ION=8mA/um. As a result, Ga0.8In0.2As/Ga0.85In0.15Sb VHJL-TFET can be a reasonable choice for digital applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.