Carbendazim is usually used to control the Sclerotinia sclerotiorum of rapes during the flowering period. This paper presents a study on transfer assessment of carbendazim residues from rape flowers to apicultural products. In the field trials, the rapes were sprayed with carbendazim on standard dosage. Bees produced apicultural products (bee pollen, honey, and royal jelly) from sprayed rapes. Apicultural products were collected on a regular basis. Carbendazim residues were extracted from bee pollen, honey, and royal jelly, respectively. HPLC/ESI-MS/MS method was developed and partially validated to identify and quantify carbendazim residues. The limits of quantification in pollen, honey, and royal jelly were 0.01 mg/kg. Mathematical curve fitting was carried out on the basis of transfer assessment of carbendazim residues from rape flowers to apicultural products. The respective carbendazim residues were 1.10 ± 0.03 mg/kg in pollen on 18th day, 0.032 ± 0.001 mg/kg in honey on 24th day, and 0.077 ± 0.002 mg/kg in royal jelly on 22nd day. Transfer assessment and mathematical curve fitting of carbendazim residues from rape flowers to apicultural products show carbendazim diminished over spraying time. The gap of carbendazim residues between pollen and honey is decreased with time. The carbendazim residues in pollen are 10 times higher than that of honey and jelly.
This paper presents a study on the transfer and metabolism of triadimefon residues from rape flowers to apicultural products. In the field trials, honeybee colonies were placed in four rape greenhouses treated with triadimefon on standard dosage. Apicultural products (pollen, honey, and royal jelly) were collected on a regular basis. Sample preparation and extraction procedure were established. HPLC/ESI-MS/MS method was validated. The respective residues of triadimefon and metabolite triadimenol were 0.03 ± 0.002 mg/kg and 0.13 ± 0.02 mg/kg in pollen on the 18th day, and both had reached the limits of detection in honey on the 24th day, while they were 0.004 ± 0.0005 mg/kg and 0.010 ± 0.0002 mg/kg in royal jelly on the 22nd day. Mathematical curve fitting studies were further investigated. On the basis of recommended dosage, the degradation half-lives of triadimefon in pollen, honey, and royal jelly were about 0.7, 12.5, and 19.5 days, respectively. Transfer of triadimefon residues from rape flowers to apicultural products diminished over spraying time. The residues of triadimefon and metabolite triadimenol in pollen were about 10 times higher than those in honey and jelly. Time to attain the maximum permissible limit of pollen in the European Union was 14.9 days, predicted from the index function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.