Photodeformable materials are a class of molecules that can convert photon energy into mechanical energy, which have attracted tremendous attention in the last few decades. Owing to their unique photoinduced deformable properties, including fast light-response and diverse mechanical behaviors, photodeformable materials have exhibited great potential in many practical applications such as actuators, photoswitches, artificial muscles, and bioimaging. In this review, we sort out the current state of photodeformable crystals and classify them into six categories by molecular structures: diarylethenes, azobenzenes, anthracenes, olefins, triarylethylenes, and other systems. Three distinct light-responsive mechanisms, photocyclization, trans-cis isomerization, and photodimerization, are revealed to play significant roles in the molecular photodeformation. Their corresponding photodeformable behaviors such as twisting, bending, hopping, bursting, and curling, as well as the potential applications, are also discussed. Furthermore, the challenges and prospective development directions of photodeformable crystals are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.