Assembling thermoelectric modules into fabric to harvest energy from body heat could one day power multitudinous wearable electronics. However, the invalid 2D architecture of fabric limits the application in thermoelectrics. Here, we make the valid thermoelectric fabric woven out of thermoelectric fibers producing an unobtrusive working thermoelectric module. Alternately doped carbon nanotube fibers wrapped with acrylic fibers are woven into π-type thermoelectric modules. Utilizing elasticity originating from interlocked thermoelectric modules, stretchable 3D thermoelectric generators without substrate can be made to enable sufficient alignment with the heat flow direction. The textile generator shows a peak power density of 70 mWm −2 for a temperature difference of 44 K and excellent stretchability (~80% strain) with no output degradation. The compatibility between body movement and sustained power supply is further displayed. The generators described here are true textiles, proving active thermoelectrics can be woven into various fabric architectures for sensing, energy harvesting, or thermal management.
Replacing traditional luminous silicone or resins with phosphor in ceramics (PiCs) as color converters has been proposed as an efficient way to improve thermal stability of high‐power white light‐emitting diodes (WLEDs). However, excessive light scattering in existing PiCs results in enormous phosphor‐converted light losses, which makes the luminosity of current PiCs color converters less efficient and means that they can only be used in devices working in reflective mode. By introducing nano wave plate structuring and Rayleigh scattering, luminous hydroxyapatite (HA)‐YAG: Ce ceramics are prepared from mesoporous HA nanorods and YAG: Ce phosphors at 850 °C, enabling for the first time WLEDs equipped with PiC color converters in transmission mode. With low‐temperature sintering and a highly transparent matrix, the quantum yield of HA‐YAG: Ce retains ≈90% of the raw phosphor, and WLEDs with the color converters exhibit a record luminous efficiency of 170 lm W−1 and a correlated color temperature below 4500 K. A facile and practical strategy of using nano structural modulation to eliminate birefringence‐induced light scattering for fabricating high‐performance ceramic converters suitable for multiple mode luminaires is demonstrated.
Narrowband ultraviolet (UV) photodetectors are highly desired in multiple areas. Photodetectors based on organic−inorganic nanocomposites offer high sensitivity, widely adjustable response range, light weight, and lowtemperature solution processibility. However, the broad absorption range of organic and inorganic semiconductor materials makes it difficult to achieve a narrowband detection feature for nanocomposite photodetectors. In this work, nanocomposite thin films containing the wide band gap conjugated polymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(bithiophene)] (F8T2) blended with wide band gap ZnO nanoparticles (NPs) serve as the active layers of the photodetectors. Narrowband UV photodetectors with high gain and low driving voltage are demonstrated by adopting a symmetric device structure, controlling the active layer composition and microstructure, and manipulating the light penetration depth in the active layer. The fabricated photodetector exhibits a high external quantum efficiency of 782% at 358 nm under a low forward bias of 3 V with the full-width at halfmaximum of 16 nm. Combined with a low dark current, a high specific detectivity of 8.45 × 10 12 Jones is achieved. The impacts of the F8T2:ZnO NPs weight ratio and the device structure on the UV-selectivity and the device performance are investigated and discussed. Our method offers a pathway to design and fabricate narrowband UV photodetectors.
Highly transparent silica glass was prepared from mesoporous silica SBA-15 powders at low temperature using Spark Plasma Sintering. It was found that the combined effect of pressure and temperature resulted in collapse of porous structure of SBA-15 and transformation to transparent glass. A sinterability enhancement mechanism involving generation of incremental surface area from pore collapse during sintering process was proposed to interpret the fully densification at low temperature. Y. Yuxiang-contributing editor Manuscript No. 35887.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.