2015
DOI: 10.1111/jace.13529
|View full text |Cite
|
Sign up to set email alerts
|

Sinterability Enhancement by Collapse of Mesoporous Structure of SBA‐15 in Fabrication of Highly Transparent Silica Glass

Abstract: Highly transparent silica glass was prepared from mesoporous silica SBA-15 powders at low temperature using Spark Plasma Sintering. It was found that the combined effect of pressure and temperature resulted in collapse of porous structure of SBA-15 and transformation to transparent glass. A sinterability enhancement mechanism involving generation of incremental surface area from pore collapse during sintering process was proposed to interpret the fully densification at low temperature. Y. Yuxiang-contributing … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
19
0
3

Year Published

2016
2016
2023
2023

Publication Types

Select...
9

Relationship

2
7

Authors

Journals

citations
Cited by 23 publications
(22 citation statements)
references
References 17 publications
0
19
0
3
Order By: Relevance
“…Inspired by the rapid development of inorganic mesoporous spheres, we propose to fabricate ceramic foam materials, employing hollow spheres as building blocks, which have been demonstrated to be a kind of promising raw materials to prepare bulk materials . In this paper, we utilize hollow silica mesoporous spheres (short for HMSSs) to fabricate novel foam materials constituted by three dimensional HMSSs‐assembled network, using particle‐stabilized foaming method which is recognized as an eco‐friendly as well as convenient method to prepare ceramic foams with high porosity and uniform pore structure .…”
Section: Introductionmentioning
confidence: 99%
“…Inspired by the rapid development of inorganic mesoporous spheres, we propose to fabricate ceramic foam materials, employing hollow spheres as building blocks, which have been demonstrated to be a kind of promising raw materials to prepare bulk materials . In this paper, we utilize hollow silica mesoporous spheres (short for HMSSs) to fabricate novel foam materials constituted by three dimensional HMSSs‐assembled network, using particle‐stabilized foaming method which is recognized as an eco‐friendly as well as convenient method to prepare ceramic foams with high porosity and uniform pore structure .…”
Section: Introductionmentioning
confidence: 99%
“…目前, 商业化最常见的大功率白光 LED 主要由 GaN-基半导体芯片、掺杂 Y 3 Al 5 O 12 : Ce 3+ (YAG: Ce) 的硅烷发光层以及硅烷透镜组成 [29] 。对于大功率 LED 而言, 芯片产生的温度高达 150~200℃, 直接 导致涂覆在芯片上的荧光粉发生温度淬灭效应, 造 成 LED 器件发生光衰减和色温偏移。同时, 作为封 装材料的硅烷易受蓝光芯片产生的热辐射影响而老 化和泛黄 [30] , 从而影响 LED 的透过率、色度等发光 性能以及使用寿命。此外, 荧光粉尺寸一般>1 μm, 折射率≥1.85, 而树脂或硅胶的折射率则较小, 因 此在荧光粉颗粒表面存在光散射, 造成发光器件效 率较低 [31] 。 研究者通过控制荧光粉晶体在前驱体玻璃中的 结晶, 制备荧光玻璃或微晶荧光玻璃陶瓷, 用以取 代传统的硅烷封装技术, 不仅获得相同的发射光范 围, 而且有效地避免温度对荧光体失效的影响, 显 著提高 LED 的使用寿命 [32] [35] 。Tsai 等 [36] 验证了荧光玻璃 的超高热稳定性, 即使在 350℃高温下, 玻璃仍表 现出稳定的色度特性。此后, 研究者通过改变玻璃 组分和制备条件, 逐渐提高 YAG: Ce 荧光玻璃的发 光性能。2014 年, Zhang 等 [37] 利用二次熔融法得到 量子产率高达 92%的 YAG: Ce 荧光玻璃。但是, 利 用掺杂 YAG: Ce 荧光玻璃组装得到的 LED 由于缺 少长波长的红光区域, 具有较低的显色指数(R a = 70~80)以及较高的相对色温(CCT = 4000~7500 K) [8] , 不能满足普通室内照明的要求。Tsai 等 [38] [33] Fig. 4 Comparison of transmitted luminescence of Ce 3+ activated garnet luminescent powder phosphor and ceramics [33] 本课题组经过近几年的研究探索, 成功地开创 了低温快速制备高性能玻璃的新工艺, 该工艺是通 过放电等离子体烧结技术烧结高活性多孔材料制备 高 质 量 的 玻 璃 块 体 。 目 前 已 开 发 出 ZSM-5 [39] 和 SBA-15 [40] 两种体系玻璃, 它们的烧结制备温度分 别为 1300 和 1000℃左右, 这比传统的高温熔融法 分别降低了 400 和 700℃。我们还将 YAG: Ce 荧光 粉和介孔材料 SBA-15 结合成功制备出荧光玻璃 [41] [43] 、Li [44] 、 Hughes [45] 等均采用共熔法制备掺铋硅基玻璃, 并通 过改变玻璃基质的组分、烧结温度等条件调节铋元 素的宽带发光位置及性能。 然而该方法熔融温度高、 时间长, 容易造成离子挥发, 组分不易控制。 针对量子点硅基发光玻璃而言, 一般是将原料 高温熔融, 然后对获得的块体进行热处理析出量子 点, 最终得到量子点玻璃。通过对热处理温度和时长 调节, 可以调控量子点的浓度、尺寸大小与分布情况, 从而得到光谱可调的量子点发光玻璃。Xu 等 [46] 通过 热处理法获得掺杂 CdSe 量子点的硅酸盐玻璃, 并 通过改变处理温度来调节量子点的尺寸, 当量子点 尺寸从 5.2 nm 增大到 6.9 nm 时, 发射谱峰从 553 nm 红移至 611 nm。Ghaemi 等 [47] 采用相同方法成功制备 了 ZnO 量子点发光玻璃, 研究发现随温度升高和热 处理时间延长, 在 247 nm 激发下, 发光峰从 392 nm 红移到 403 nm。Dong 等 [48] [56] 对固相烧结技 术的机理进行了深入研究, 他认为球形玻璃颗粒的 烧结机理是粘性流动, 在他们制备的玻璃实验中发 生这种粘性的温度范围是 575~744℃。1985 年贝尔 实验室 Rabinovich 对此方法进行了详细的综述 [57] 。 Takashi Uchino 等在 2004 [58] 和 2007 [59] [58][59] Fig. 5 SEM image, photograph and luminescence spectra of as-prepared by solid state sintering [58][59] 化硅玻璃, 但该方法制备所需的时间特别长, 能源 消耗大。…”
Section: 荧光粉发光玻璃unclassified
“…6 HRTEM image of the SPS as-consolidated transparent sample [39] 图 7 不同温度下烧结样品的实物照片 [65] Fig. 7 Photographs of samples sintered at different temperatures [65] 样品变成完全透明。 ANSYS 热分析软件模拟结果表 明, 样品中心温度比边缘温度高 26℃, 上表面的温 度比下表面高 5℃。因此, 模具的设计(比如: 材质、 尺寸、壁厚等)对于烧结过程中的温度分布有直接的 影响, 根据实际需要合理的设计模具对于 SPS 在实 际中的生产应用具有十分重要的意义。 由于烧结时间短、烧结温度低、升温速度快等 优点, 利用 SPS 烧结技术制备发光玻璃能够有效地 控制掺杂或复合功能组分的量及分布。同时, 利用 沸石烧结制备的玻璃比采用其他粉体(如: 纳米二 氧化硅粉 [62] 和无定形二氧化硅粉等 [63] )制备的玻璃 具有更高的透过率, 有利于提高玻璃的发光性能。 Gong 等 [66] 与压力作用下, 介孔结构坍塌转换成玻璃的示意图 [40] Fig. 8 TEM images of original SBA-15 (a), sintered sample treated by SPS at 1173 K (b) and the silica glass sintered by SPS at 1293 K (c).…”
Section: 放电等离子体烧结unclassified
“…Jiangtao Li et al obtained Y 2 O 3 ‐Al 2 O 3 ‐SiO 2 , Al 2 O 3 ‐La 2 O 3 ‐ZrO 2 , HfO 2 ‐Al 2 O 3 ‐Y 2 O 3 amorphous host materials by a similar method. In addition, there are some interesting reports about optical glasses via spark plasma sintering (SPS) . However, there is no report about the large‐sized La 2 O 3 ‐TiO 2 system high‐refractive bulk glass.…”
Section: Introductionmentioning
confidence: 99%